
ИЗВЕСТИЯ высших учебных заведений

Лесной журнал

ГОД ИЗДАНИЯ ДВАДЦАТЫЙ

Vocament of the least

1977

АРХАНГЕЛЬСК

РЕДАКЦИОННАЯ КОЛЛЕГИЯ

Проф. И. М. Боховкин (отв. редактор), доц. Е. С. Романов (зам. отв редактора), доц. С. И. Морозов (зам. отв. редактора), проф. Н. М. Белая, проф. Ю. Г. Бутко, доц. П. И. Войчаль, проф. И. В. Воронин, проф. М. Л. Дворецкий, проф. М. И. Зайчик, доц. Г. Л. Дранишников, проф. В. Г. Кочегаров, проф. Н. В. Маковский, акад. ВАСХНИЛ, проф. И. С. Мелехов, доц. Н. В. Никитин, проф. А. Н. Песоцкий, доц. А. Р. Родин, проф. Ю. Д. Силуков, проф. Н. И. Федоров, проф. В. В. Фефилов, проф. В. Н. Худонегов, проф. В. В. Щелкунов.

Ответственный секретарь редакции А. И. Кольцова.

«Лесной журнал» публикует научные статьи сотрудников вузов по всем отраслям лесного дела, сообщения о внедрении законченных исследований в производство, о передовом опыте в лесном хозяйстве и лесной промышленности, информации о научной жизни высших учебных заведений. Предназначается для научных работников, аспирантов, преподавателей вузов, студентов старших курсов лесотехнических институтов.

© ИВУЗ, «Лесной журнал», 1977.

Адрес редакции: 163007, Архангельск, 7, Набережная В. И. Ленина, 17, Архангельский лесотехнический институт, тел. 4-13-37.

ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ «ЛЕСНОЙ ЖУРНАЛ» № 1 (Год издания двадцатый)

Сдан в набор 22/XII 1976 г. Подписан к печати 20/IV 1977 г. форм. бум. 70X1081/од. Печ. л. 15,4. Физ. л. 11. Уч.-изд. л. 15,08, Сл. 00021 Тираж 2150 экз. Заказ 9736. Цена 1 руб.

Типография им. Склепина издательства Архангельского обкома КПСС, г. Архангельск, Набережная В. И. Ленина, 86.

ЮБИЛЕЮ ВЕЛИКОГО ОКТЯБРЯ— ДОСТОЙНУЮ ВСТРЕЧУ

1977 год войдет в историю как год 60-летия победы Великой Октябрьской социалистической революции.

У советских людей стало доброй традицией отмечать наши важнейшие революционные даты новыми трудовыми успехами, еще более тесным сплочением вокруг ленинской Коммунистической партии. С призывом ознаменовать юбилей нашей могучей социалистической державы новыми достижениями в развитии экономики, науки, культуры обратился к советскому народу Центральный комитет КПСС в постановлении «О 60-й годовщине Великой Октябрьской социалистической революции».

«Победа Октября, — говорится в постановлении, — главное событие XX века, коренным образом изменившее ход развития всего человечества... Важнейшим итогом самоотверженного труда советского народа стало построенное в нашей стране общество развитого социализма». Образовалась новая историческая общность людей — советский народ. В совместном труде и борьбе за социализм вырос братский союз народов СССР, сформировался советский человек — патриот и интернационалист.

Постановление ЦК КПСС ярко и убедительно раскрывает величие достижений Союза ССР за 60 лет, выдающуюся созидательную и творческую деятельность Коммунистической партии Советского Союза в коммунистическом строительстве в нашей стране, в создании и укреплении мировой социалистической системы, в национально-освободительном движении, в борьбе за мир. «Советский Союз сегодня, как никогда, силен и прочен, исключительно высок его авторитет на международной арене. Все это рождает чувство гордости, еще выше поднимает революционный патриотический дух трудящихся, их трудовую и политическую активность».

Большой и сложный путь прошла за 60 лет лесная промышленность СССР. Из патриархальных крестьянских промыслов, где, по выражению В. И. Ленина, царила во всей своей силе кабала, а здоровье рабочих подвергалось сильнейшему разрушению, лесная промышленность за годы Советской власти превратилась в высокомеханизированную отрасль, уверенно развивающуюся по пути комплексного использования лесных ресурсов и постоянного улучшения условий труда и быта. По объемам лесозаготовок и лесопиления наша страна вышла на первое место в мире. Практически заново созданы у нас целлюлозно-бумажная и лесохимическая отрасли, производство мебели и

плит. На прочной научной основе развивается лесное хозяйство. Итогами шестидесятилетнего труда советских людей является современный мощный многоотраслевой лесной комплекс, все более успешно решающий задачи полного и рационального использования и приумножения лесных богатств СССР.

Свой достойный вклад в это дело внесли наука и высшая школа. В СССР сложилась широкая сеть высших и средних учебных заведений и научно-исследовательских институтов лесного профиля. Усилиями лесных вузов и факультетов Москвы и Ленинграда, Архангельска и Воронежа, Минска и Свердловска, Киева, Львова, Красноярска и дрвыращены высококвалифицированные жадры для лесного производства и науки, решены многие сложные научные проблемы, создано немало образцов новейшей техники, разработаны современные технологические процессы.

Для советской высшей школы 60-летие Великого Октября — событие глубокого содержания и смысла. Это и всенародное торжество, имеющее огромное воспитательное значение для молодого поколения, это и подведение итогов многогранной деятельности вузов, это настрой на еще более целеустремленную работу.

В лекционных курсах и других формах учебы по всем дисциплинам должны быть отражены содержание и выводы постановления ЦК КПСС, вдохновенно и ярко показаны достижения нашего народа, успехи развития соответствующих отраслей, задачи и перспективы, намеченные XXV съездом КПСС. Особенно велика в этом роль кафедр общественных наук. Они должны возглавить работу по изучению постановления ЦК КПСС не только студентами, но и преподавательским составом, провести юбилейные теоретические конференции, посвященные знаменательной дате.

Под знаком славного юбилея, в обстановке приподнятости и в то же время повышенной требовательности должны пройти ленинский зачет и общественно-политическая практика студентов, различные смотры и конкурсы. Вся атмосфера юбилейного года в вузах должна служить делу воспитания коммунистического отношения к труду, преданности нашим революционным идеалам.

Уже сейчас повсеместно необходимо развернуть подготовку к праздничным торжественным заседаниям, организовать выставки и стенды, отображающие вклад каждого института, факультета, лучших кафедр в подготовку специалистов и развитие науки. Ответом на постановление партии стало массовое социалистическое соревнование студентов, профессорско-преподавательского персонала и всех других сотрудников вузов за достойную встречу славного юбилея.

Под руководством ленинской партии, под знаменем Великого Октября советский народ уверенно идет к заветной цели — коммунизму.

1977

ЛЕСНОЕ ХОЗЯИСТВО

УДК 674.038.6:634.0.24

N≥ 1

продукция рубок ухода в культурах сосны

А. Д. ЯНУШКО, В. Н. КИСЛЯКОВ

Белорусский технологический институт

Изучена сортиментная структура продукции рубок ухода в культурах сосны в Белоруссии и установлены математические связи выхода важнейших видов сортиментов со средним диаметром вырубаемой части насаждения. Составлена таблица товарности получаемой продукции.

Рубки ухода относятся к числу важнейших лесохозяйственных мероприятий. В лесхозах Белорусской ССР они являются не только мерой ухода за лесом, но и одним из основных источников получения древесины. За период с 1960 г. по 1975 г. количество древесины, заготовлениой при рубках ухода, увеличилось в 2,6 раза и достигло 3,5 млн. м³. В общем объеме лесопользования древесина рубок ухода составляет сейчас около 40%. Учитывая возрастную структуру белорусских лесов (53% молодняков) и постепенное улучшение лесных дорог, можно ожидать, что в ближайшем будущем рубки ухода получат дальнейшее развитие.

Древесина от рубок ухода в основном идет на удовлетворение местных нужд. Около 82% древесины, заготовленной при рубках ухода, реализуется в круглом виде, и лишь 18% перерабатывается в цехах ширпотреба лесхозов на пиломатериалы и различные изделия деревообработки. В связи с развитием в лесхозах деревообрабатывающих производств структура потребления постепенно меняется. Доля древесины идущей в переработку, возрастает, а реализуемой в круглом виде — сокращается. Это перераспределение отвечает интересам сельского населения, колхозов, совхозов и школ, которым более выгодно получать древесину не в круглом, а в переработанном виде. Развитие производства древесностружечных и древесноволокнистых плит требует также дополнительного сырья, которое могут дать рубки ухода.

С экономической точки зрения особый интерес представляют рубки ухода в культурах сосны. Сосновые культуры, как правило, высокопродуктивны, дают ценную лесопродукцию и наиболее доступны в транспортном отношении. Доля культур сосны в лесопокрытой площади республики равна 15,1%. В общем объеме рубки ухода в сосновых культурах составляют: по площади — 37,8%, по массе — 30,7%. Все это указывает на важность изучения сортиментной структуры древесины рубок ухода в культурах сосны при решении проблемы рационального использования древесного сырья.

Для определения выхода сортиментов мы использовали материалы, полученные при обследовании 48 пробных площадей в 16 лесхозах республики. Пробные площади заложены в соответствии с требованиями ГОСТа 16128—70 в чистых культурах сосны или с примесью до двух единиц других пород, с полнотой 0,9—1,0 в наиболее распространенных типах леса, на долю которых приходится 86,3% площади сосновых культур. Распределение пробных площадей по типам леса и возрастам приводится в табл. 1.

Деревья в рубку отбирали в строгом соответствии с «Наставлением по рубкам ухода в лесах Белорусской ССР». При перечетах для древостоев со средним диамет-

Таблица 1

			Количе	ество проб	ных площ	дей в воз	расте куль	тур, лет	
Т	ип леса	8-9	15—17	25—26	3032	3636	4345	50 — 55	итого
Сосняк	вересковый мшистый кисличный	2 2 2	3 5 2	3 3 2	2 2 2	2 4 2	1 2	3 2 2	16 20 12
	Bcero	6	10	8	6	8	3	7	48

ром 8 см и -менее ступени толщины принимали равными 1 см, с диаметром более 8 см — 2 см. Высоты измеряли с точностью 0,1 м.

При рубках осветления все срубленные деревья разрабатывали на сортименты, которые затем обмеряли. Для определения выхода сортиментов при других видах рубок ухода брали модельные деревья в количестве 15—20% от числа срубленных (но не менее 20 шт. на пробе) в каждой ступени толщины. Всего взято и обмерено 1217 модельных деревьев. Выход сортиментов определяли с помощью ЭВМ «Минск-22» по алгоритмам и программе К. Е. Никитина [10].

Стволы раскряжевывали на сортименты в соответствии с требованиями ГОСТов 9463—72, 3243—46 и ТУ 13—01—06—66. Градация сортиментов по длине—0,5 м, точность измерения диаметров — 0,1 см, длины — 0,01 м, объема — 0,001 м³. Для определения выхода приняты наиболее распространенные в практике работы лесхозов сортименты: пиловочник, подтоварник, дровяная древесина для технологических нужд и дрова топливные.

При изучении товарности чрезвычайно важно установить связи между выходом сортиментов и таксационными показателями деревьев и древостоев. Этому вопросу посвящены работы ряда авторов ([1, 2, 5— 8, 10] и др.), в которых выявлены закономерности выхода сортиментов в древостоях различных пород в зависимости от диаметра, высоты и других факторов, разработаны методические положения по составлению таблиц, характеризующих товарную структуру древостоев в статике и динамике. Но эти исследования касались главным образом древостоев в целом и меньше всего той их части, которая выбирается во время рубок ухода. Относить же на эту часть закономерности, найденные для всего насаждения, по-видимому, неправомерно, так как соотношение диаметров и высот, фаутность деревьев в этом случае иные. Следует иметь в виду, что при рубках ухода, которые, как правило, ведуются по комбинированному методу, вырубаются деревья не только из подчиненной, но и из верхней части полога, что значительно усложняет установление товарной структуры, так как вырубаемая часть насаждения отличается от подчиненной, приводимой в таблицах хода роста.

Для изучения математических связей между таксационными показателями использован регрессионный анализ. Расчеты проведены на ЭВМ «Минск-22». Анализ полученных данных показал, что связь между Н и D хорошо выражается уравнениями параболы третьего порядка. Парабола второго порядка является слишком «жесткой» [11]. Полиномы четвертой и особенно пятой степени, имеющие много точек перегиба, излишне подробно копируют изгибы ломаной кривой и не всегда отражают суть явления.

Связь между высотой и диаметром вырубаемой части насаждений для каждого исследуемого типа леса была выражена соответствующим уравнением. Однако для наиболее распространенных диаметров (1—18 см) она хорошо передается обобщенным уравнением

$$H = 1,571 - 0,2787D + 0,194891D^3 - 0,007331389D^3.$$
 (1)

Это уравнение обеспечивает такую же точность выравнивания связи, как индивидуальные уравнения для каждого типа леса. Мы считаем, что возможность выразить связь между высотой и диаметром одним уравнением для рассматриваемых типов леса отражает особенность роста вырубаемой части насаждения в культурах сосны.

Связь выхода сортиментов вырубаемой части с таксационными показателями насаждений определяли также с помощью приемов регрессионного анализа. Выход сортиментов определен в зависимости от среднего диаметра вырубаемой части древостоя. При этом подтвержден вывод Н. П. Анучина [2] и Ф. П. Моисеенко [7], что относительный выход сортиментов определяется в основном средним диаметром древостоя и мало зависит от высоты и других факторов.

Весьма трудоемкое дело — построение математических моделей сортиментной структуры вырубаемой части древостоя. Обычно для выравнивания используют кривые [3] или просто приводят опытные данные [6, 9]. По некоторым породам построены математические моде-

ли [4].

Нами было получено и проанализировано 15 математических уравнений, характеризующих увязку выхода сортиментов. Выравнивание и взаимная увязка сортиментов были проведены для ликвидной, деловой древесины, пиловочника, подтоварника, дровяной древесины для технологических нужд, дров топливных и отходов.

Процент выхода ликвида представляет собой весьма сложную кривую, имеющую перегиб при значениях диаметра 10—12 см. Поэтому удовлетворительной аппроксимации сравнительно простыми элементарными функциями добиться не удалось. Применение для этой цели полиномов высоких степеней (5—7), хотя и дает неплохое выравнивание, но не удовлетворяет с точки зрения сути изучаемого явления, так жак не «срезаются» случайные отклонения. В то же время наличие двух явно выраженных отличительных участков кривой говорит о том, что сравнительно быстрое наращивание выхода ликвида до среднего диаметра древостоя 10—11 см и его очень медленное изменение от 11—12 см подчиняется двум разным закономерностям. Поэтому выход ликвида мы выразим в виде уравнений:

для диаметров 1-10 см

$$y = 11,618 - 0,6548x + 5,563169x^2 - 0,8121327x^3 + 0,0338222x^4;$$
 (2) для диаметров 11—22 см

$$y = 80,226 + 1,0658x - 0,042110x^2 + 0,0005549x^3.$$
 (3)

Аналогично можно представить выход деловой древесины: для диаметров 7—17 см

$$y = -56,350 + 9,0170x + 0,155895x^2 - 0,0141545x^3; (4)$$

для диаметров 18-22 см

$$y = -183,778 + 35,5345x - 1,628488x^{2} + 0,0249999x^{3}.$$
 (5)

Связь процента выхода пиловочника со средним диаметром в исследованном диапазоне диаметров можно выразить уравнениями прямой и параболы второго порядка. Несколько лучшую аппроксимацию дает второе уравнение, которое наиболее полно отражает общую закономерность выхода сортиментов. Конкретное уравнение связи процента выхода пиловочника со средним диаметром (11—22 см) имеет вид

$$y = 0.599 - 0.9803 x + 0.134757 x^{2}. (6)$$

Изменение выхода подтоварника $\Pi \tau$ обусловлено выходом деловой древесины $\mathcal I$ и пиловочника Π , τ . e.

$$\Pi T = \mathcal{I} - \Pi. \tag{7}$$

Сложна связь процента выхода дровяной древесины (для технологических нужд и дров топливных) со средним диаметром. Обе кривые вогнутые, с точкой максимума для дров топливных при диаметре 4 см и дров технологических — при диаметре 8—9 см. Точка максимума для дров топливных обусловлена резким возрастанием выхода дров технологических начиная с днаметра 5 см. В свою очередь, увеличение процента выхода деловой древесины при среднем диаметре выбираемой части 8—9 см приводит к сокращению относительного объема дров технологических. Выше диаметра 11—12 см процент топливных дров и выше диаметра 14—15 см процент дров технологических изменяются незначительно, что обусловлено медленным возрастанием доли деловой древесины.

Выход дров технологических в зависимости от среднего диаметра выбираемой части хорошо описывается уравнениями:

для диаметров 4-14 см

$$y = -137,182 + 55,2242x - 5,268571x^2 + 0,1510460x^3;$$
 (8)

для диаметров 15-22 см

$$y = 283,235 - 39,2032x + 1,858288x^2 - 0,0294607x^3.$$
 (9)

Выход дров топливных $\mathcal{A}_{\text{топ}}$ определяем в зависимости от процента дров технологических $\mathcal{A}_{\text{тхн}}$, деловой древесины $\mathcal{A}_{\text{д}}$ и ликвида J

$$\mathcal{A}_{\text{TOR}} = \mathcal{J} - (\mathcal{A}_{\text{A}} + \mathcal{A}_{\text{TXH}}). \tag{10}$$

Процент отходов О определен по уравнению

$$O = 100 - J. \tag{11}$$

Вычисленные по предложенным уравнениям значения выхода отдельных сортиментов и категорий древесины приведены в табл. 2.

Анализ полученных данных показал, что перечисленные уравнения дают хорошее сглаживание: F_1 =6,9 \div 17,7; S_1^2 =0,06 \div 0,15; R==0,93 \div 0,97; σ =3,03 \div 5,70.

Относительно большое значение о объясняется заметной изменчивостью выхода сортиментов, причем наиболее изменчив выход дров топливных. Поэтому, несмотря на выбор адекватной модели, остаточная дисперсия оказывается значительной, что связано с природой изучаемого явления.

Как видно из таблицы, при рубках ухода в сосновых культурах можно получить большое количество ликвидной и деловой древесины. Уже при среднем диаметре 6 см выход ликвида превышает 76%, а при диаметре 16—22 см достигает 89%. О выходе ликвида в количестве 90% сообщает Л. Ф. Ипатов [6], который исследовал продукцию, получаемую при прореживаниях в сосняках Европейского Севера.

Анализ продукции рубок ухода показал, что сосновые культуры в процессе промежуточного пользования дают значительное количество ликвидной и деловой древесины. В насаждениях со средним диаметром вырубаемой части 18—22 см можно получить 30—45% пиловочника.

Таблица

			Выход сортиз	ментов, % от	общего запаса	·	
$D_{ m cp}$ см	Пиловоч-	Подтовар-	Итого	Др	082	HTOTO	_
	ник	ник	деловой дравесины	техноло- гические	топливные	ликвида	Отходы
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22		9,6 18,5 27,1 35,3 36,8 41,6 45,5 48,3 50,0 50,5 49,6 47,4 44,4 40,6 36,4 31,8		9,1 26,1 37,1 43,0 44,8 43,2 39,2 33,8 27,8 22,2 17,8 13,9 11,0 9,1 7,1 6,8 6,6 6,5	15,7 26,6 40,5 41,0 39,3 29,7 21,8 15,9 10,9 10,3 9,0 8,5 7,2 7,0 6,8 6,8 6,7	15,7 26,6 40,5 54,7 67,1 76,4 82,3 85,1 86,2 87,6 87,9 88,4 88,8 88,9 89,1 89,1 89,2	84,3 73,4 59,5 45,3 32,9 23,6 17,7 14,9 12,6 12,4 12,1 11,8 11,6 11,4 11,1 11,0 10,9 10,8

Установленные связи и зависимости, а также показатели товарности позволяют улучшить учет заготовляемой древесины и ее оценку, а также планирование использования древесного сырья.

ЛИТЕРАТУРА

[1]. Анучин Н. П. Сортиментные и товарные таблицы. Изд. 5-е. М., 1963. [2]. Анучин Н. П. Лесная таксация. Изд. 3-е. М., 1971. [3]. Багинский В. Ф. Динамика товарности сосновых молодняков искусственного происхождения.— В кн.: Лесохозяйственная наука и практика, вып. 23. Минск, 1973. [4]. Во инов Н. Т. Математические модели объемных и сортиментных таблиц осины. — В кн.: Лесохозяйственная наука и практика, вып. 22. Минск, 1972. [5]. Захаров В. К. Лесная таксация. Изд. 2-е. М., 1967. [6]. И патов Л. Ф. Выход сортиментов при различной степени изреживания сосновых молодняков. — В кн.: Возобновление и рост древесных пород на вырубках Европейского Севера, вып. 17. Архангельск, 1974. [7]. Моисеенко Ф. П. О закономерностях в росте, строении и товарности насаждений. Киев, 1965. [8]. Моисеенко Ф. П. Таблицы для сортиментного учета леса накорню. Изд. 4-е. Минск, 1972. [9]. Неволин О. А. Товарная структура сосновых молодняков в связи с рубками ухода. — В кн.: Возобновление и рост древесных пород на вырубках Европейского Севера, вып. 17. Архангельск, 1974. [10]. Никитин К. Е. Применение ЭВМ в лесной таксации, М., 1972. [11]. Рго d а п. М. Holzmesslehre J. D. Sauerländer's Verlag. Frankfurt am Main, 1965.

Поступила 19 июля 1976 г.

УДК 634.0.5

ИССЛЕДОВАНИЕ ФОРМЫ И ПОЛНОДРЕВЕСНОСТИ СТВОЛОВ ЕЛИ В УКРАИНСКИХ КАРПАТАХ

Закономерности взаимосвязи как основа нормативной лесоучетной информации

А. А. СТРОЧИНСКИЙ, А. З. ШВИДЕНКО

Украинская сельскохозяйственная академия

Методами множественной корреляции установлено влияние высоты и днаметра на показатели формы и полнодревесности древесных стволов. Математические модели разработаны с учетом вертикальной зональности лесорастительных условий.

В системе обработки лесоустроительной информации на ЭВМ закономерности взаимосвязи показателей формы и полнодревесности древесных стволов с таксационными показателями, легко определяемыми в натуре, приобретают решающее значение при разработке различного рода нормативной информации, в частности регрессионных уравнений для определения запаса.

Ранее практически общепринятым было использование зависимости видовых чисел (или видовых высот) от высоты; при этом в первом случае ограничивались уравнениями типа гиперболы, во втором—линейными. На недостаточность подобного подхода обращал внимание еще М. М. Орлов [4]: «...так форма ствола обусловливается, помимо высоты, еще диаметром на высоте груди, то естественно, что и видовые числа находятся в зависимости от диаметров на высоте груди». В последнее время появился ряд работ [1, 2, 6], в которых авторы приходят к выводу о необходимости учета влияния на видовые числа (и другие показатели формы и полнодревесности) как высоты, так и диаметра, однако тесноту и характер этого влияния разные авторы трактуют неодинаково и в некоторых случаях противоречиво.

При разработке математических моделей зависимости видовых чисел ели Украинских Карпат от других таксационных показателей в качестве аргументов, влияющих на их величину, были предварительно испытаны диаметр деревьев на высоте груди d, высота h, относительная протяженность кроны $L_{\rm kp}$, площадь проекции кроны $S_{\rm kp}$ и возраст A. Множественный корреляционный и регрессионный анализ зависимости $f = \varphi \ (d, h, L_{\rm kp}, S_{\rm kp}, A)$ для шести участков со сплошной рубкой древостоя (таксационная характеристика участков приведена нами ранее [5]) показал, что хотя видовое число и значимо коррелирует со всеми перечисленными аргументами, при практическом применении следует ограничиться только величинами d и h, поскольку добавление в регрессионные уравнения $L_{\rm kp}$, $S_{\rm kp}$ и A практически не меняет статистик множественной корреляции.

Для анализа зависимости f и второго коэффициента q_2 от d и h было использовано 200 пробных площадей, на каждой из которых срублено от 15 до 40 учетных деревьев. Пробы заложены в приспевающих и спелых еловых древостоях естественного происхождения, с полнотой 0,7 и выше, чистых и с примесью других пород не более 3 единиц по составу. В пределах двух высотно-зональных поясов, т. е. в

увязке с типами возрастной структуры [5] для совокупностей учетных деревьев составлены сложные таблицы распределения, краткая выдержка из которых для центральных групп диаметров приведена в табл. 1 (невыравненные экспериментальные данные).

Таблица 1

Днаметр,	Число наблюде-	c	редние знач)1) — Числит имости от в		знаменателі	,
СМ	ний	18	21	24	27	30	33	36
			Сред	негорный	пояс			
26	373	691 477	$\frac{698}{484}$	$\frac{701}{488}$	$\frac{701}{493}$	700 490	729 505	_
34	328	_	644 446	$\frac{652}{448}$	684 467	691 468	691 468	697 470
'	'	•	і Верхне	эгорный п	юяс	•	'	l
26	276	$\frac{666}{455}$	670 455	675 459	$\frac{678}{460}$			
34	288	<u></u>	$\frac{648}{424}$	$\frac{650}{440}$	$\frac{650}{442}$	662 446	684 462	-

Анализ составленных таблиц, во-первых, показал, что между формой и полнодревесностью стволов с одинаковыми d и h, но принадлежащими к различным высотно-зональным поясам, существует различие, с высокой вероятностью подтверждаемое статистическими критериями. Во-вторых, при постоянной высоте увеличение диаметра приводит к весьма заметному уменьшению f и q_2 , в то время как при постоянном диаметре связь f (и q_2) с h более сложная: для маломерных стволов увеличение h до некоторой высоты (12—15 м) приводит к их уменьшению, а затем — к достаточно ощутимому возрастанию.

Этот вывод подтверждается данными корреляционного анализа (табл. 2), из которых следует (даже если ограничиться случаем линейной связи) значимая зависимость указанного характера f и q_2 от d и h. Так, частные коэффициенты корреляции $r_{fh,\ d}$ и $r_{\sigma,h,\ d}$ в девяти случаях из десяти положительны, а для участка 4 — отрицательный знак объясняется преобладанием в соответствующем материале тонкомерных стволов.

Отмеченная тенденция, естественно, более отчетлива для средних значений f и q_2 соответствующих градаций d и h. Так, коэффициент корреляции средних f и q_2 с высотой (при постоянном днаметре) равен соответственно 0,78—0,91 и 0,68—0,96, при этом не наблюдается влияния высотно-зональных поясов на величину r.

Поэтому математические модели зависимости f и q_2 были составлены с учетом d и h по двум высотно-зональным поясам:

а) верхнегорный пояс (свыше 1100—1150 м над уровнем моря)

$$f = 10^{-3} \left(402.5 - 1.60h + 0.0572h^2 - \frac{d - 42}{0.142 + 0.00545d} \right); \tag{1}$$

$$q_2 = 10^{-3} \left(610 - 1,44h + 0,0818h^2 - \frac{d - 36}{0,130 + 0,00433d} \right); \tag{2}$$

7
ಡ
Ħ
Н
5
Ó
ಥ
H

	:		ပြီ	Средние значения	Straves	IK3	-		Парные коэффициенты	ффео	нциситы	Частные	Частиые коэффициенты
Объект исследования	KOJRYE- CTBO	1 (0.	_	4		45		7 1023	don .	корреляции	ии	KO	корреляции
	деревьев			(2)		(8)			r ₁₂	_	r ₁₃	1,1313	71312
					, ,	A. Cr Srape	леднег Эе вид	А. Среднегорный пояс Старое видовое число	0.5				
Модельные деревья Участок 5 1	1230 185 333	0,480 0,451 0,473	32.28	832	29,4 37,1 29,0	26,92 29,93	<u>დ</u> ეთენ დე	0,511 0,584 0,420	0,508 -0,461 -0,408		-0,369 -0,211 -0,275	-0,275 -0,334 -0,210	+0,050 +0,311 +0,117
					Bro	poř.	ффеом	Второй коэффициент формы	OMbi				
Модельные деревья	1230	0,694	¥.	33	29,4	26,8	∞ <u>.</u>	0,412	0,382		-0,203	-0,249	+0,164
i					•	Б. В.	рхнег	Б. Верхнегорный пояс					٠
					-	Crap	ое вид	Старое видовое число					
Модельные деревья* Участок 4	1280	0,432	23.83		35,3	28,9	س س	0,693	$\begin{array}{c c} -0.692 \\ -0.712 \end{array}$		-0.506 -0.661	$\begin{array}{c c} -0.421 \\ -0.273 \end{array}$	$^{+0,215}_{-0,137}$
* . w c,	231	0,0 4,4	ထင္တ	ಲ್ಲ 4	40	88	<u></u>	0,611	-0,604 -0,630		-0,460	-0,314 -0,348	+0,092 +0,092
1 O	311		228	· ধ	8	22		0,709	-0,708		0,526	-0.504	+0,042
					Bro	рой к	ффсо	Второй коэффициент формы	Mbi				
Модельные деревья	1230	0,646	91	33	35,3	26,3	ය. 	0,653	-0,645	_	-0,496	0,336	+0,129
* Деревья, срубленные на участках 16, сюда не включены	эниые на 🕽	частка	:x 1-	ر - و	юда	не ві	ключев	ibi.		•		-	

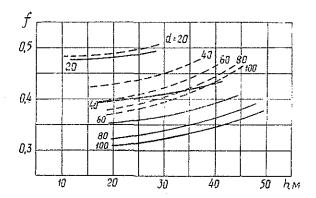


Рис. 1. Зависимость видовых чисел от высоты при постоянном диаметре для ели Украинских Карпат (сплошные линии — верхнегорный пояс; пунктирвые — среднегорный).

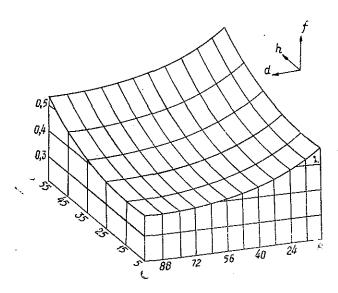


Рис. 2. Графическая модель видовых чисел (среднегорный пояс).

б) среднегорный пояс (до 1100—1150 м над уровнем моря)

$$f = 10^{-3} \left(438 - 2,30h + 0,0934h^2 - \frac{d - 40}{0,163 + 0.00874d} \right); \tag{3}$$

$$q_2 = 10^{-3} \left(583 - 1,44h + 0,0818h^2 - \frac{d - 74}{0,329 + 0,00714d} \right).$$
 (4)

Зависимости (1) и (3) показаны на рис. 1, а аксонометрическое изображение модели видовых чисел для среднегорного пояса (как пример) — на рис. 2. На основании формул (1) и (3) были составлены таблицы видовых чисел. Проверка адекватности моделей (1)—(4) показала, что их применение не дает значимых (при 5%-пом уровне значимости) систематических ошибок, а средняя квадратическая ошибка не выходит за пределы ±3,5%. Следовательно, с учетом зависимостей

(1) и (3) определить запас древостоев по нормативам можно с погрешностью не более $\pm 5\%$.

Анализ сложных таблиц распределения первого q_1 и третьего q_3 гоэффициентов формы по d и h показал, что характер изменения q_1 и q_3 и их связи с d и h аналогичен данным для q_2 . Учитывая тесную корреляционную связь q_1 и q_3 с q_2 , в пределах каждой клетки (d_i, h_i) таблиц распределения q_1 и q_3 мы вычислили показатели $\lambda_1 = q_1 : q_2$ и $\lambda_2 = q_2 : q_3$. В результате статистического анализа величин λ_1 и λ_2 установлено, что они очень устойчивы и зависят только от диаметра стволов. Аналитически эта связь выражается следующими уравнечиями:

а) среднегорный пояс

$$\lambda_1 = 1,219 + 0,000625d: \tag{5}$$

$$\lambda_2 = 1,208 + 0,25166 \lg d;$$
 (6)

б) верхнегорный пояс

$$\lambda_1 = 1,279$$
 (коэффициент варьирования 1,9%); (7)

$$\lambda_2 = 1,255 + 0,26172 \lg d. \tag{8}$$

Уравнения (5)—(8) позволяют получить образующие древесных стволов и еще раз подтверждают различие в сбеге стволов ели различных высотно-зональных поясов.

Представляет интерес сравнение полученных нами результатов с

литературными данными (рис. 3).

Как видно из рисунка, несмотря на некоторые различия в деталях, отчетливо просматривается тенденция к возрастанию видовых чисел в зависимости от увеличения высоты при постоянном диаметре (за исключением результатов Г. С. Войнова) для деревьев выше 12—15 м. Можно предположить, что различия в характере зависимости для деревьев небольшой высоты (кстати, практически не влияющие на результат определения запаса приспевающих и спелых древостоев) объясняются особенностями моделирования и недостаточным количеством экспериментального материала.

Отметим, что данные Крюденера подтверждают отмеченную нами особенность: чем толще деревья, тем сильнее влияние высоты на видовые числа (при постоянном диаметре).

Г. С. Войнов [1, с. 53] сформулировал «закон зависимости полнодревесности стволов от их диаметра и высоты», который гласит: «Средние величины видового числа в пределах любой совокупности стволов деревьев одной породы находятся в обратной зависимости от величин произведения диаметра и высоты стволов», и в соответствии с которым «заполняются имевшие место в теории полнодревесности пробелы» н «раскрывается в целом и находит простую математическую форму характер связи важнейшего таксационного показателя — видового числа стволов с их диаметром и высотой». Видимо, краткого знакомства с данными рис. З достаточно, чтобы усомниться в справедливости процитированных утверждений. Дело, конечно, в том, что влияние высоты при постоянном диаметре хотя и значимо, но невелико, и для его объективной оценки требуется весьма обширный экспериментальный материал и тщательное изучение по каждой конкретной породе. Так, М. Хиваташи [6], применяя множественный регрессионный анализ, получил для сосны (Pinus densiflora Seib. et Zucc.) района Токио зависимость

$$\lg fh = -0.07268 + 0.96664 \lg h - 0.16027 \lg d,$$

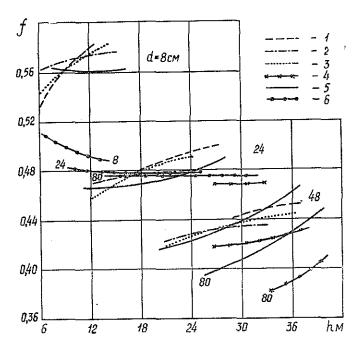


Рис. 3. Сравнение характера зависимости видового числа от высоты при постоянном диаметре.

1 — данные М. Григалюнаса и А. Гарбинчюса [2] для ели Литовской ССР; 2, 3 — данные М. Хиваташи [6] соответственно для криптомерии и широколиственных пород Японии; 4 — данные Крюденера [3] для ели 1 типа, 1 группы; 5 — наши данные для ели Украинских Карпат (среднегорный пояс); 6 — данные Г. С. Войнова [1] для осины Севера (аналогичные данные автор приводит и для березы).

из которой следует небольшое уменьшение f с увеличением h (заметим, этот случай единственный среди восьми приведенных M. Хиваташи уравнений), а для той же сосны района Mаэбаши

$$\lg fh = -0.12086 + 1.00632 \lg h - 0.147824 \lg d$$

т. е. видовое число возрастает с увеличением h. Закономерность, отмеченная Γ . С. Войновым, нашими материалами подтверждается только для маломерных стволов.

На основании изложенных в настоящей работе зависимостей $f(q_2)$ от d и h составлены математические модели объемных, сортиментных и некоторых других таблиц для ели Украинских Карпат, предназначенных как для таксации лесосечного фонда, так и для использования в системе обработки лесоустроительной информации на ЭВМ.

ЛИТЕРАТУРА

[1]. Войнов Г. С. Зависимость полнодревесности стволов от их диаметра и высоты. — «Лесное хозяйство», 1975, № 2. [2]. Григалюнас М., Гарбинчюс А. Регрессия объемов стволов и видовых чисел. — «Лесное хозяйство», 1974, № 11, [3]. Крюденер. Массовые таблицы и таблицы сбега ели Европейской России, вып. VI, ч. II. Спб., 1912. [4]. Орлов М. М. Лесная таксация. Изд. 2-е. Л., 1925 [5]. Строчинский А. А., Швиденко А. З. Исследование формы и полнодревесности ели в Украинских Карпатах (Закономерности распределения). — ИВУЗ, «Лес-

ной журнал», 1976, № 1. [6]. Hiwatashi M. A Study on the Method of Preparation of Form Basal Area and Form Height Tables.— Bull. Gov. For. Exp. Sta., № 242. Tokyo, 1971.

Поступила 15 марта 1976 г.

УДК 519.242: 634.0.24

ИЗМЕНЕНИЯ В СТРОЕНИИ СРЕДНЕВОЗРАСТНЫХ БЕРЕЗНЯКОВ ПРИ РАЗЛИЧНЫХ РЕЖИМАХ РУБОК УХОДА

Р. Н. КЛИМОВ, А. М. ЕЛФИМОВ

Архангельский лесотехнический институт Айкинский лесхоз Минлесхоза Коми АССР

Рассматривается влияние рубок ухода, различающихся по интенсивности и периодичности проведения, на строение березняков черничных, формирующихся в условиях средней подзоны тайги Европейского Севера. Разреживание средней интенсивности (28%), выполненное 10 лет назад, или слабой с более частой повторяемостью (через 5 лет) улучшает характер распределения деревьев по ступеням толщины. Отмечается возможность применения кривой Пирсона 1 типа для изучения строения древостоев, пройденных рубками ухода.

Характер распределения деревьев по диаметру, высотам и другим таксационным показателям в чистых и смешанных березняках, произрастающих в различных природных зонах нашей страны, изучали разные авторы ([1, 3, 5, 7] и др.). Работы по строению березняков, формирующихся под влиянием рубок ухода в условиях Европейского Севера, нам не известны.

Объекты нашего исследования расположены в Квандозерском лесничестве Пуксоозерского лесхоза Архангельской области (средняя подзона тайги) и представлены четырьмя пробными площадями, заложенными в березняках черничных II класса бонитета. Смешанные древостои, в формировании которых, кроме березы, незначительной примеси осины и ивы, участвует ель предварительного происхождения, в 20-летнем их возрасте (1962 г.) были пройдены рубками ухода различной интенсивности. Опыты заложены для изучения восстановления ели в составе древостоев при различных режимах разреживания лиственного полога:

1) рубки ухода слабой интенсивности и редкой повторяемости (более 10 лет);

2) уходы средней интенсивности с редкой периодичностью (более 10 лет):

3) уходы слабые по интенсивности, но с частой повторяемостью (через 5—10 лет).

По данным последнего учета, выполненного в 1972 г., удаление части лиственных пород не привело к существенным изменениям в составе древостоев [2]. Доля участия ели выше на пробной площади, пройденной рубками средней интенсивности (3E), однако это в значительной степени объясняется лучшей представленностью деревьев, выросших из сохраненного подроста. Длительное восстановление ели после сплошных рубок вызывает необходимость использования в период ее выращивания сопутствующих пород, в связи с чем режим рубок ухода может предусматривать получение в виде промежуточного пользования высококачественной лиственной древесины.

Строение средневозрастных березняков по диаметру изучали путем проверки гипотезы соответствия эмпирического распределения деревьев семейству кривых Пирсона, по программе, составленной О. М. Могилевером [4]. Материалы обработаны на ЭВМ «Минск-22» в вычислительном центре ЛенНИИЛХа*. Результаты обработки для всех деревьев березы и основного полога древостоя приведены в табл. 1.

Таблица 1

Пробная площадь	Режим рубок ухода	Средний диаметр М, см	Основ- ное откло- нение ±°, см	Коэффи- циент измен- чивости ±С,%	Асниметрия и ее ошибка ±8	Эксиесс и его ошибка ±Е	"Каппа" Пирсона х
167	Контроль	4,2 7,9	3,3 3,7	79,1 47,2	$\frac{1,93\pm0,018}{0,77\pm0,032}$	3,67±0,035 0,68±0,063	$\frac{-1,47}{-1,27}$
2—67	1 1962—19%	4,2 7,6	3,1 3,2	$\frac{75.6}{44.2}$	$\frac{1,79\pm0,018}{0,73\pm0,031}$	$\frac{3,24 \pm 0,035}{0,97 \pm 0,062}$	$\frac{-1,41}{1,39}$
3—67	2 1962—28 %	4 <u>,8</u> 8 <u>,8</u>	$\frac{3,6}{3,6}$	75,9 41,5	$\frac{1,58 \pm 0,023}{0,53 \pm 0,040}$	$\frac{1,91\pm0,046}{-0,04\pm0,081}$	$\frac{-0.88}{-0.25}$
4—67	3 1962—17 % 1967—14 %	5,7 9,6	$\frac{4,1}{3,4}$	$\frac{72,5}{35,5}$	$\frac{1,09 \pm 0,026}{0,69 \pm 0,041}$	$\begin{array}{c} -0.45 \pm 0.053 \\ \hline 0.50 + 0.081 \end{array}$	-0.45 -0.93

Примечание. В числителе данные для всей березы; в знаменателе — для основного полога.

При разреживаниях не только создаются лучшие условия для роста ели, но и уменьшается напряженность взаимоотношений среди лиственного полога благодаря снижению густоты древостоя. В перегущенных средневозрастных березняках отмечается большое количество отставших в росте деревьев. Этим объясняется сильная положительная косость рядов распределения, при которой их асимметричность связана с усиленной дифференциацией деревьев по размерам, наблюдаемой на данном этапе развития древостоев. Для не тронутого рубками древостоя характерна сильная косость рядов распределения по диаметрам, S=1,93. У основного полога асимметричность рядов средняя, S=0,77.

Ряды распределения березы по ступеням толщины отличаются очень сильным варьированием средней величины. Коэффициент изменчивости диаметров всех деревьев березы меньше в древостоях, пройденных рубками ухода, но не опускается ниже 72.5%. У основного полога (I—II классов роста) разреживания вызвали уменьшение варьирования диаметров на 3.1-11.7% по сравнению с контролем.

В строении древостоев, пройденных одноразовым разреживанием слабой интенсивности (пробная площадь 2—67), через десять лет после ухода уже нет заметных различий по сравнению с контролем. При двух остальных режимах рубок ухода с уменьшением густоты древостоев уменьшаются показатели меры косости и крутости. Частая повторяемость рубок понижает показатель асимметричности рядов березы почти в два раза, однако у деревьев основного полога изменения незначительны.

Показатель меры крутости свидетельствует о повышенной концентрации деревьев в средних ступенях толщины. При втором и третьем

Библиотека Архангельскего Люоотожинческого института ьм. В. С. Куйбышееа

^{*} Авторы выражают признательность сотрудникам лаборатории оказавшим помощь в подготовке и обработке материала.

^{2 «}Лесной журнал» № 1

режимах разреживаний ряды распределения более пологие, особенно заметны изменения у всей березы в древостое.

Строение средневозрастных березняков, даже основного полога, существенно отличается от нормального ($t_s = \frac{S}{m_s} > 3$ и $t_E = \frac{E}{m_E} > 3$

[6]). Характер распределения деревьев по ступеням толщины, независимо от интенсивности и количества приемов рубок ухода, отвечает кривой Пирсона I типа. Исключение составляет береза основного полога на пробной площади 2—67, где ×>1,0, что соответствует VI типу семейства кривых Пирсона.

В заключение отметим, что одноразовый уход с интенсивностью до 20% не приводит к заметным изменениям в строении древостоев. Большая выборка лиственных пород или слабое разреживание с частой повторяемостью уходов «улучшают» характер распределения деревьев по ступеням толщины. Перераспределение общего количества деревьев в сторону увеличения процента крупных позволяет судить о более высокой товарной структуре древостоя.

Результаты проверки гипотезы соответствия распределения диаметров семейству кривых Пирсона, изучение влияния рубок ухода на показатели, определяющие выбор типа кривой, открывают широкие возможности для моделирования строения березняков с желаемыми параметрами.

ЛИТЕРАТУРА

[1]. Атрощенко О. А. Закономерности распределения деревьев по днаметру и высоте в березовых молодняках естественного происхождения. — В сб.: Лесоведение и лесное хозяйство, вып. 8. Минск, 1974. [2]. Климов Р. Н. О режиме рубок ухода в смешанных древостоях с елью предварительного происхождения. — Тезисы докладов к научно-технической конференции аспирантов и молодых ученых АЛТИ за 1974 г. Архангельск, 1974. [3]. Макаренко А. А., Смирнов Н. Т. Формирование сосновых и сосново-березовых насаждений. Алма-Ата, «Кайнар», 1973. [4]. Могилевер О. М. Проверка гипотезы соответствия эмпирического распределения кривой Пирсона. — В сб. программ обработки лесохозяйственной информации на ЭВМ «Минск-22». Л., ЛенНИИЛХ, 1971. [5]. Моисев В. С. Таксация молодняков. Л., ЛТА, 1971. [6]. Фаларев Э. Н., Верхунов П. М., Зайченко Л. П., Медведева З. В. Математическая статистика. Красноярск, СибТИ, 1974. [7]. Чупров Н. П. Закономерности строения березовых древостоев Архангельской области. — В сб. работ по лесному хозяйству и лесохимии. Архангельск, Северо-Западное книжное изд-во, 1971.

Поступила 18 июня 1976 г.

УДК 634.0.12

К БИОЛОГИИ НЕКОЛЮЧЕЙ ФОРМЫ ГЛЕДИЧИИ

А. А. ҚУЛЫГИН

Новочеркасский инженерно-мелиоративный институт

Изучены рост семенных потомств от неколючих деревьев гледичии, степень наследования признака неколючести и другие биологические и экологические особенности. Установлена неоднородность морфологических признаков, биологических пэкологических свойств. Выдвинута задача селекции неколючей формы гледичии на быстроту роста, морозостойкость, более полную передачу потомству признака неколючести.

Гледичия обыкновенная относится к числу быстрорастущих, хозяйственно-ценных пород. Она засухоустойчива, выносит засоление почв и почти не имеет вредителей. В качестве главной породы гледичия ис-

пользуется в защитном лесоразведении и озеленении на Украине, в Молдавии, на Нижнем Дону и Северном Кавказе, в Средней Азии.

К недостаткам гледичин следует отнести ее сильную колючесть, затрудняющую уход за насаждением, и невысокую морозостойкость. Для лесоводов большой интерес представляет неколючая форма гледичии (Gleditschia triacanthos f. inermis Willd.). Она встречается как примесь в насаждениях гледичии обыкновенной и распространяется в тех же районах, что и основной вид.

В оценке неколючей формы гледичии нет единства. Ф. И. Травень и П. Ф. Болдовкин [10] считают ее засухоустойчивой и морозостойкой породой. По данным А. А. Шаповалова [12], в полосах Заветинского опытного пункта Ростовской области неколючая форма росла значительно лучше гледичии с колючками и меньше повреждалась морозами. На большую зимостойкость неколючей формы обращают внимание Н. К. Вехов [1], С. С. Пятницкий [9] и др.

В то же время в многотомной работе «Деревья и кустарники СССР» [3] указывается, что неколючая форма гледичии по зимостойкости не отличается от основного вида, а Г. П. Озолин и др. [8] считают неколючую гледичию даже более теплолюбивой, чем колючую

форму.

В нашей стране гледичия выращивается более 160 лет в различных экологических условиях. Мы не вправе говорить о климатинах гледичии, так как эта порода экзотическая. Однако исследования П. И. Лапина [6] показывают, что в условиях Москвы растения гледичии из семян различного происхождения проявили неодинаковую зимостой-кость. Для неколючей гледичии, так же как и для колючей ее формы, характерно наличие биотипов с повышенной и пониженной морозостойкостью.

В лесоводственной теории и практике под формой принято подразумевать группу деревьев с каким-либо характерным признаком. Форма не предполагает идентичности всех биологических и экологических признаков (в отличие от сорта).

Деревья неколючей гледичии, однородные по признаку неколючести, неодинаковы по быстроте роста, морозостойкости и другим показателям. Наши исследования показывают, что они различаются по характеру ветвления и очищаемости от сучьев, форме и размерам плодов, семян и др. [5]. Противоречия в оценке неколючей формы гледичии связаны с тем, что разные авторы изучали неоднородные в экологическом

отношении деревья гледичии.

Исследуя насаждения гледичии на Украине (Владимирский массив Николаевской области), Л. Т. Устиновская [11] установила, что диаметр деревьев колючей формы больше, чем у неколючей, и сделала вывод, что в условиях недостаточного увлажнения деревья неколючей формы биологически более устойчивы. На наш взгляд, этот вывод спорный, поскольку размеры деревьев характеризуют их рост, а не биологическую устойчивость. Ясень зеленый, например, более устойчив в засушливой степи, чем ясень обыкновенный, однако его размеры меньше.

Более поздние исследования Н. М. Грисюк [2] показали, что неколючая форма гледичии растет более энергично в высоту, чем колючая, в то же время в росте по диаметру разницы между ними почти не наблюдалось. Лучший рост неколючей формы в высоту отмечали Н. К. Вехов [1]. С. С. Пятницкий [9], Б. И. Логгинов [7] и др.

Деревья неколючей гледичии могут быть очень крупными. В озеленительных посадках г. Ростова-на-Дону встречаются экземпляры

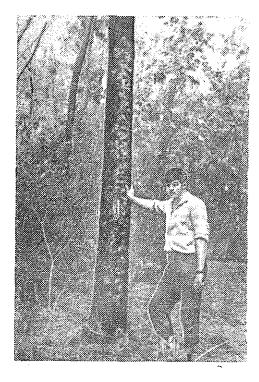


Рис. 1. Неколючая форма гледичии. Возраст дерева — 35 лет, высота — 18 м, диаметр — 30,5 см. Красногвардейский мехлесхоз Краснодарского края, Фото автора.

высотой 18—20 м и диаметром до 50—60 см. В Красногвардейском мехлесхозе Краснодарского края деревья неколючей формы в 30—40-летнем возрасте имеют высоту 18—23 м и отличаются хорошим ростом и полнодревесностью (рис. 1).

В Донском учебно-опытном лесхозе Ростовской области лучшие деревья неколючей гледичии к возрасту 25 лет достигают 14—15 м в высоту и 20—30 см по диаметру (старый питомник).

Изучение роста потомств неколючей гледичии в этом лесхозе ведется с 1972 г. В коллекцию культур 1972 г. гледичия была введена посевом семян от неколючих деревьев с последующим

удалением колючих экземпляров (размещение 0,8×3,0 м). Культуры 1973 г. созданы посадкой 2-летних неколючих сеяпцев гледичии (размещение 0,8 × 3,0 м). Почва участка — обыкновенный чернозем. Зимой 1973/74 гг. опытные посадки сильно пострадали от зайцев, и ранней весной 1974 г. все растения были посажены «на пень». С появлением поросли оставляли по одному самому сильному побегу, остальные — удаляли.

Разница в росте деревьев стала заметной уже в первый год. Одни потомства росли быстрее, наблюдалась разница и в характере ветвления. После посадки растений «на пень» соотношение в быстроте роста отдельных потомств гледичии не изменилось (табл. 1, данные обмеров весной 1975 г.).

В культурах 1972 г. лучшим ростом отличались потомства № 14, 17, 19 и 25; худшим — № 21 (разница в высотах вполне достоверна). У потомств № 18 и 22 разница высот находится в пределах ошибки опыта.

В культурах 1973 г. лучшие по отношению к контролю показатели имеют потомства гледичии № 9 и 12 (разница близка к достоверной). При сравнении семенных потомств можно видеть достоверную разницу в высотах. Так, в культурах 1973 г. высота у потомства гледичии № 12 на 44,1±8,0 см больше, чем у потомства гледичии № 1; в культурах 1972 г. у потомства № 14 на 76,3±10,4 см больше, чем у потомства № 21

Зимы 1972/73, 1973/74 и 1974/75 гг. были относительно мягкими, и сколько-нибудь существенного подмерзания растений не отмечено ни у одного из потомств.

Опытные работы с неколючей формой гледичии продолжались в 1974 и 1975 гг. В настоящее время в коллекции Донского лесхоза испытывается около 40 потомств неколючей гледичии.

Таблица 1

Номер семенных потомств	Число расте- ний	Высота <i>М±т</i> , см	Диаметр на 1,3 м М±т, мм	Основное отклонение по высоте с	Разница высот с контролем $M_1-M_2\pm\sqrt{\frac{2}{m_1^2+m_2^2}}$, см
	<u></u>		Культуры 1972	2 г.	
8 (конт-	126	$212,4 \pm 2,7$	9,0±0,2	±30,1	0
роль) 14 17 18 19 21 22 25	21 170 25 130 23 36 57	$258,9\pm8,1$ $233,3\pm2,8$ $210,7\pm5,7$ $234,5\pm3,2$ $182,6\pm6,6$ $224,9\pm7,1$ $233,4\pm6,0$	$\begin{array}{c} 11,5\pm0,5\\ 9,8\pm0,2\\ 8,0\pm0,4\\ 9,4\pm0,2\\ 6,1\pm0,5\\ 9,7\pm0,4\\ 9,5\pm0,4 \end{array}$	±37,3 ±36,7 ±28,6 ±36,3 ±31,7 ±42,7 ±45,1	$\begin{array}{c} +46.5\pm 8.5 \\ +20.9\pm 2.8 \\ -1.7\pm 6.3 \\ +22.1\pm 4.2 \\ -29.8\pm 7.1 \\ +12.5\pm 7.6 \\ +21.0\pm 6.6 \end{array}$
			Культуры 1973	г.	
(конт-	22	$229,9 \pm 7,8$	10,2±0,6	±36,8	0
роль) 1 6 9 10 12 13	43 21 18 20 33 25	$\begin{array}{c} 213.0 \pm 4.7 \\ 226.9 \pm 6.9 \\ 260.2 \pm 9.1 \\ 243.2 \pm 9.2 \\ 257.1 \pm 6.4 \\ 252.9 \pm 9.2 \end{array}$	$\begin{array}{c} 9.3 \pm 0.4 \\ 9.0 \pm 0.6 \\ 12.2 \pm 0.6 \\ 11.0 \pm 0.7 \\ 12.1 \pm 0.5 \\ 11.1 \pm 0.6 \end{array}$	±31,0 ±31,8 ±39,1 ±41,3 ±37,0 ±45,8	$\begin{array}{c} -16.9 \pm \ 9.1 \\ -3.0 \pm 10.4 \\ +30.3 \pm 12.0 \\ +13.3 \pm 12.1 \\ +27.2 \pm 10.1 \\ +23.0 \pm 12.1 \end{array}$

Известно, что из семян, собранных с неколючих деревьев, вырастают растения как без колючек, так и с колючками (табл. 2). Отчасти такое расщепление можно объяснить перекрестным опылением неколючих и колючих форм. Однако маточники № 43 и 46 росли в одном насаждении и имели один и тот же состав опылителей, но процент неколючих растений у них совершенно различен. Такое резкое расхождение невозможно объяснить лишь влиянием опылителей.

Таблица 2

Номер потом- ства (номер маточного дерева)*	Выход неколючих сеянцев, %	Номер потом- ства (номер маточного дерева)*	Выход неколючих сеянцев, %
4	62,5	34	56,7
9	79,4	43	79,4
10	48,2	45	45,4
12	46,2	46	14,5
13	59,3	47	34,9
18	60,3	48	62,7
30	63,1		ĺ ,

 $^{^{*}}$ Каждое потомство было представлено 300— 400 растениями.

Неколючие деревья гледичии мы рассматриваем как гибриды F_1 , F_2 , F_3 и т. д., в разной степени передающие потомству признаки неколючести. Этим не исключается существование деревьев, которые при соответствующих условиях (опылителях) могут дать 100%-ный выход пеколючих растений. Чаще все же приходится сталкиваться с неполной передачей потомству признака неколючести.

Некоторые лесоводы пытались объяснить отсутствие колючек у гледичии внешними причинами: влиянием повышенной влажности воздуха и пониженного освещения [4]. Подобный вывод не углубляет понимания биологии гледичии. Он не объясняет, например, почему в условиях повышенной влажности воздуха (пойменные леса) одни деревья гледичии имеют множество колючек, а другие растут без колючек. Здесь налицо недооценка наследственных особенностей гледичии и переоценка влияния условий произрастания.

Показатель степени наследования признака неколючести потомством следует считать одним из главных, а в качестве семенников гледичии необходимо отбирать деревья, у которых неколючесть наследуется

в большей степени.

ЛИТЕРАТУРА

[1]. Вехов Н. К. Быстрота роста экзотов в условнях степи. М.—Л., Гослесбумнздат, 1949. [2]. Грисюк Н. М. Культура гледичии на Украине.—В сб.: Быстрорастущие и хозяйственно-ценные древесные породы (разведение и использование). М., 1958. [3]. Деревья и кустарники СССР. Под ред. С. Я. Соколова и Б. К. Шншкина. М.—Л., изд-во АН СССР, 1949. [4]. Квятковская М. А. Белая акация и гледичия для полезащитных лесных насаждений.— «Лесное хозяйство», 1948, № 1. [5]. Кулыгии А. А. Гледичия обыкновенная (проблемы селекции и семеноводства),—В сб.: Степное лесоразведение, т. XIV, вып. 3. Новочеркасск, 1973. [6]. Лапии П. И. Интродукция древесных и кустарниковых растений в Москве.— Бюллетень Главного Боланического сада, вып. 34. М., 1959. [7]. Логгинов Б. И. Основы полезащитного лесоразведения. Киев, 1961. [8]. Озолии Г. П. и др. Деревья и кустарники для защитного лесоразведения. М., «Лесная промышленность», 1974. [9]. Пятиникий С. С. Курс дендрологии. Харьков, 1960. [10]. Травень Ф. И., Болдовкин П. Ф. Защитное лесоразведение в Азово-Черноморском крае. Ростов и/Д., 1937. [11]. Устиновская Л. Т. Гледичиевые насаждения в южностепных районах Украины. «Лесное хозяйство», 1953, № 6. [12]. Шаповалов А. А. Лесные полосы на темно-каштановых почвах в западной части Сальских степей. — В сб.: Агролесомелиорация и лесное хозяйство, Ростиздат, 1939.

Поступила 28 июня 1976 г.

УДК 576.8.095.3

ПОДБОР ОПТИМАЛЬНОЙ ПИТАТЕЛЬНОЙ СРЕДЫ ДЛЯ ВЫРАЩИВАНИЯ ПЕРВИЧНЫХ КУЛЬТУР ТКАНЕЙ РЯДА ПРЕДСТАВИТЕЛЕЙ СОСНОВЫХ И ИЗУЧЕНИЕ ИХ РОСТА

Э. А. БЫЧЕНКОВА

Ленинградская лесотехническая академия

В изолированной культуре на пяти питательных средах выращивали 10 разных видов и родов сем. *Ріпасеае*. Установлены оптимальная среда (Мурасиге и Скуга) для роста всех культур, пролиферирующие ткани каждой породы, получены характеристики роста первичных эксплантатов на разных средах.

Выявлено, что полярность образцов не влияет на интен-

сивность пролиферации.

За последнее десятилетие метод тканевой культуры стали широко использовать в физиологии растений. Особенно перспективен он для изучения физиологии древесных растений — наиболее сложного объек-

та исследования ввиду их больших размеров и медленного роста по сравнению с травянистыми.

Изучение этим методом древесных растений, в том числе и хвойных, было начато еще Готре [20]. Однако хвойные породы долгое время оставались редким объектом исследования, что было связано с трудностями их культивирования [22]. В последние годы интерес к культуре тканей хвойных пород возрос, но исследования проводятся в основном на культуре тканей единичных видов: Juniperus communis L. [10, 11], Sequoia sempervirens Endl. [5], Cupressus funebris Endl. [33], Picea glauca Voss. [19, 32, 34, 35]. Некоторые авторы изучали культуру тканей одного или двух видов сосен [4, 7, 16, 17, 22, 24, 26, 27, 31]. Нам известна только одна работа, посвященная изучению

культуры тканей сразу нескольких родов хвойных [23].

Культивирование тканей хвойных пород разные авторы проводят на средах с различной минеральной основой. Назовем наиболее распространенные из них. Так, Бол [5] и Констабль [9] в основу брали среду Готре, Конар [25] — среду Уайта, Рагозинская [31] — среду Уайта и среду Линсмайера и Скуга [28], Левенберг и Скуг—свою среду, несколько отличающуюся от среды Готре [29], Рейнерт и Уайт [32] разработали специальную среду для Picea glauca, Торок и Тимман [19] — модифицированную среду Рейнерта, Барнес и Найлор [6] и Лаво [26, 27] — среду Геллера. За последние годы широкое распространение приобрела среда Мурасиге и Скуга, часто используемая не только для выращивания изолированных тканей травянистых растений, для которых в свое время она была разработана авторами [30], но и для культивирования тканей древесных растений, в частности хвойных [7, 18].

Надо сказать, что в первых опытах культуру ткани *Pinus pinaster* Sol. Давид выращивал на среде Геллера [12—14], затем параллельно на среде Геллера и среде Мурасиге и Скуга [15, 16], отме-

чая лучший рост культур на среде Мурасиге и Скуга.

Изучая изолированную культуру тканей хвойных пород, мы свои исследования проводили также на различных питательных субстратах: на среде Готре [8] в самом начале наших работ, затем на среде Левенберга и Скуга [1] и несколько позже полностью перешли на среду Мурасиге и Скуга для выращивания культур Pinus silvestris L. [2].

Задача настоящего исследования заключалась в изучении сравнительной способности некоторых родов и видов сем. *Pinaceae* к каллюсогенезу. Но для решения этой задачи необходимо было иметь некоторую единую питательную среду, на которой одинаково успешно росли культуры всех 10 взятых нами пород.

Для этого все эксплантаты выращивали на пяти наиболее распространенных питательных средах: по прописи Мурасиге и Скуга, Левенберга и Скуга, Рейнерта, Геялера и Нича [3]. Для стимуляции пролиферации, наряду с витаминами и аминокислотами, рекомендуемыми каждым автором, в каждую среду вносили физиологически активные добавки в двух вариантах: α-нафтилуксусная кислота (2 мг/л) с кинетином (1 мг/л) — НУК+К и 2, 4-дихлорфеноксиуксусная кислота (1 мг/л) — 2, 4-Д. Контролем служил чистый агар-агар. Опыт проводили 17 мая 1971 г. Всего изучено 100 вариантов: 10 пород ≤ 5 сред ≤ 2 варианта физиологически активных добавок.

риантов: 10 пород 5 сред 2 варианта физиологически активных добавок.
Материалом исследования служили 3—5-летние ветви деревьев 20—40-летнего возраста, произрастающих в Ботаническом саду ЛТА. Культивировали эксплантаты: сосны румелийской (Pinus peuce Gris.), сосны горной (Pinus montana Mill.), сосны обыкновенной (Pinus silvestris L.), сосны веймутовой (Pinus strobus L.), сосны кедровой (Pinus sibirica (Rupr.) Мауг.), пихты бальзамической (Abies balsamifera Mill.), пихты сибирской (Abies sibirica Ldb.), ели колючей (Picea pungens Engelm.), ели европейской (Picea abies (L) & Rustan) и пистрацияты сибирокой (Larix sibirica Ldb.)

ропейской (Picea abies (L.) Karsten) и лиственницы сибирской (Larix sibirica Ldb.). Опыт поставлен по общепринятой методике [3, 21]. Стерилизация опытного ма-

гернала проведена по ранее описанной методике [1].

Таблица 1

		Пролифери	рующая часть боко	Пролиферирующая часть боковой поверхности на разных питательных средах	разных питательных	средах	Средние один обра:	Средние данные на один образец разрос-
Порода	Вариант добавок	Левенберга	Рейпепта	Pennens	H	Мурасиге	шегося на расиге н люса в к	шегося на среке Му- расиге и Скуга кал- люса в конце опыта
THE PARTY OF THE P		n Cryra				и Скуга	Объем, см³	Сухая масся, г
Сосна румелийская	HVK+K	0,1 (некроз)	0,1 0,1 (некроз)	0,3 (некроз)	0,3 (некроз)	0,8	10,5	0,2140
	2, 4-Д	0,7 0,7 (некроз)	0,5 (некроз)	0,5 (некроз)	I	1,0	5,9	0,1838
Сосна веймутова	HVK+K		. I	********		0,5	5,7	0,1754
	2, 4-Д	0,1 (некроз)	1	1	l	0,5	7,5	0,2094
Сосна кедровая	HVK+K	0,5 0,5 (некроз)	1,0 (некроз)	0,5 (некроз)	0,5 (некроз)	0,5	3,4	0,1560
	2, 4-Д	0,5 0,5 (некроз)	0,5 0,5 (некроз)	0,7 0,7 (некроз)	0,3 (пекроз)	1,0	2,2	0,1140
Соспа горная	HyK+K	0,1 (некроз)	0,1 0,1 (некроз)	-	l	0,3	4,5	0,1683
	2, 4-Д	0,5 0,5 (некроз)		0,3 0,3 (некроз)	[1,0	6,2	0,1763
Сосна обыкновенная	HVK+K	1,0 1,0 (некроз)	1,0 1,0 (некроз)	1,0 1,0 (некроз)	0,1 0,1 (некроз)	0,1	12,0	0,2861
	2, 4-Д	1,0 1,0 (некроз)	1,0 (некроз)	1,0 (некроз)	0,7 (некроз)	0,1	3,6	0,1729
Пихта бальзамичес- кая	HVK+K	0,1 0,1 (некроз)	1,0 (некроз)	0,5 0,5 (некроз)		0,5	16,0	0,5713

Продолжение табл. 1

•			Пролифериц	рующая часть боков	юй поверхности на 1	Пролиферирующая часть боковой поверхности на разных питательных средах	средах	Средние даниые на один образец разрос-	Средние даниые на
	Порода	Варнант добавок	Левенберга	рейнепта	Голлера	H	Мурасиге	шегося на среде Му- расиге и Скуга кал- люса в конце опыта	среде Му- куга кал- ице опыта
,			п Скуга				n Cryra	Объем,	Сухая масса, г
		2, 4-Д	0,5 (15 (Hermos)	0,3	0,5		5,0	4.	0,1689
_	Пихта сибирская	HVK+K	о,5 (петроз) 0,1 0,1 (некроз)	0,5 (некроз)	0,3 0,3 0,3 (некроз)	0,3 (некроз)	0,5	14,8	0,3689
		2, 4-Д	l	0,5 0,5 (некроз)		0,3 (некроз)	0,7	3,8	0,2090
	Ель колючая	HVK+K	0,1 (некроз)	0,1 (некроз)		.	0,2	 Не разрастался	астался
		2, 4-Д	0,5 (некроз)		0,3 (некроз)		0.5	5,0	0,2071
	Ель европейская	HVK+K	0,1	0,1 (некроз)	1		0,3	8,3	0,1836
		2, 4-Д	0,1 (некроз)	0,7 (некроз)	0,1	l	0,2	Не разрастался	астался
•	Листвешница сибир- ская	HVK+K	0,7 0,7 (некроз)	0,7 (некроз)	0,7 (некроз)	ļ	0,9	0'9	0,2025
		2, 4-Д	1,0 (некроз	0,7 (некроз)	0,7 0,7 (некроз)	0,5	7,0	He past	Не разрастался

Примечание. В числителе — оценка пролиферации через 10 дней после начала опыта; в знаменателе — через месяц.

Стерильные отрезки ветвей длиной 20 см вносили в стерильный бокс. Там их еще раз стерилизовали 96%-ным спиртом и обжигали над пламенем спиртовки. Затем с них снимали кору, резали на сегменты длиной 7 мм и вертикально торцом помещали в 100-миллилитровые колбы Эрленмейера, содержащие 40 мл агаризованной питательной среды. Повторность по каждой породе в каждом варианте шестикратная. Половину образцов ставили апикальным концом вверх, половину — вниз для проверки влияния полярности на интенсивность каллюсообразования. Культуры выращивали в термостатах при температуре 25°C и влажности воздуха 80%, в темноте. Средняя продолжительность опыта составляла 3 мес (для пихты бальзамической — 5 мес.). В первый месяц культивирования наблюдения за каллюсогенезом проводили еженедельно, в посмедующие — через две недели. Оценку пролиферации давали по степени покрытия боковой поверхности эксплантата каллюсом и выражали в относительных единицах от 0,1 до 1,0. При разрастании каллюса определяли его конечный объем в кубических сантиметрах и сухую массу.

Начало пролиферации тканей было отмечено на 10-й день после постановки опыта на всех пяти средах. На голодном агаре каллюсогенез отсутствовал. На среде Мурасиге и Скуга пролиферация была отмечена на образцах всех пород, однако у пихты сибирской (на среде с НУК+К и 2, 4-Д) и у пихты бальзамической (с НУК+К) начало пролиферации было сдвинуто на 20-й день после постановки опыта. На остальных четырех средах начало пролиферации было довольно дружным (на 10-й день), но каллюсогенез был отмечен не у всех пород, а появившиеся небольшие каллюсы быстро некротизировали (спустя 3 недели после постановки опыта) без последующего возобновления роста. Показатели роста эксплантатов хвойных пород на различных средах и в разных вариантах приведены в табл. 1.

Из таблицы видно, что для выращивания исследованных культур хвойных пород оптимальна среда Мурасиге и Скуга. Более интенсивный каллюсогенез у большинства пород наблюдался на среде с НУК+К, особенно при разрастании каллюса по поверхности питатель-

ной среды.

Начало пролиферации тканей обычно характеризуется появлением небольшого налета каллюса на боковой поверхности образцов. У сосен в первую очередь наблюдается митатическая активность смоляных ходов, как вертикальных, так и горизонтальных. Спустя 1,5 месяца после постановки опыта на образцах образуется достаточно большой каллюс, рост которого продолжается в течение 2—3 месяцев (у пихты бальзамической — свыше 5 месяцев), причем у большинства эксплантатов отмечалось интенсивное разрастание каллюса по поверхности

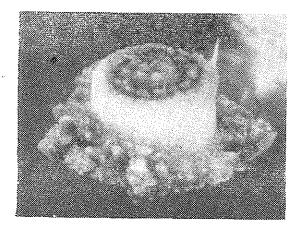


Рис. 1.

питательной среды вокруг образца (рис. 1).

Появление некрозов на среде Мурасиге и Скуга у большинства культур было отмечено только через 1,5— 2 месяца после постановки опыта (у пихты бальзамической — через 4 месяца, у елей некрозы практически отсутствовали) с последующим возобновлением роста. Основными пролиферирующими тканями были камбий, клетки смоляных ходов, паренхима сердцевины н луба и клетки листовых следов. По интенсивности

пролиферации различных тканей породы располагаются следующим образом. У эксплантатов сосны обыкновенной все перечисленные ткани способны к пролиферации (рис. 1); у елей пролиферируют те же ткани, но смоляные ходы у ели европейской пролиферируют на среде с НУК+К, а у ели колючей — с 2, 4-Д; у сосны горной, румелийской и кедровой — камбий, луб и смоляные ходы, у остальных эксплантатов—только камбий и луб.

Наиболее интенсивная пролиферация наблюдалась у эксплантатов пихты бальзамической и сибирской. У эксплантатов сосны обыкновенной, сосны румелийской, ели европейской, сосны веймутовой, сосны горной, лиственницы, ели колючей и сосны кедровой каллюсогенез последовательно уменьшался.

Положение образцов апикальным концом вверх или вниз не влияло на интенсивность пролиферации.

ЛИТЕРАТУРА

[1]. Быченкова Э. А. Методические приемы выращивания тканей сосцы обыкновенной в кудытуре in vitro— Распительные ресурсы, 1967, т. III. [2]. Быченкова Э. А. Некоторые данные о специфическом синтезе смол в каллюсах (пролифератах) сосны обыкновенной. — В сб.: Культура изолированных органов, тканей и клагор претений. М., «Наука», 1970. [3]. Бутенко Р. Г. Культура изолированных каней и физиология морфогенеза растений. М., «Наука», 1964. [4]. A u11 kk1 S a1 m i a M. (сутою дейса! stadies on tissue culture of Pinus sembra. — «Physiol. plant», 1975. № 1. [5]. В a11 E. Studies on the nutrition of the callus culture of Sequoia semperviens. — «Année biol.», 1955. № 1-4. [6]. В ar ne s R. L. and N ay I or A. W. Studies on the ornithine cycle in roots and callus tissues of Pinus serotina and Pinus clausa. — «Bot Gaz», 1969. № 63. 71. В го w п. С. L. and La w r en ce R. H. Culture of pine callus on a delined medium. «Forest Sci.», 1968. № 1. [8]. В уt chenkova E. The study of problieration of cambium and parenchyma of branches from trees in cultures in vitro. — «Biol. plant». 1963. № 4. [9]. Constabel F. Ernä Urungsphysiologiche und monometrische Untersuchungen sur Gewebekultur der Gymnosprangium-usallen von Juniperus arten. — «Biolog. Zentralb», 1957, № 4. [10]. Constabel F. Gerbstoffproduction der Kaltuskulture von Juniperus communis L. — «Planta», 1968, № 1. [12]. D a vi d A. Influence de divers facteurs ur les cultures initiales de tissus de pin maritime. — C. R. Acad. Sci., 1967, № 7. [13]. D a vi d A. Relation entre l'activite histogène, in situ et in vitro, dambium du tronc du pin maritime et al teneur en glucides solubles et acides aminés libres du liber — cambium. — C. R. Acad. Sci., 1967, № 7. [14]. D a vi d A. Relation entre l'activite histogène, in situ et in vitro, № 23. [177]. D a vi d A. Elettion du pin maritime et a leneur en glucides solubles et acides aminés libres du liber — cambium. — C. R. Acad. Sci., 1970, № 21. [16]. D a vi d A. Obtention d'une souche tissulaire de Pinus pinuster Sol. a partir de ti [1]. Быченкова Э. А. Методические приемы выращивания тканей соспы обыкновенной в культуре in vitro.— Растительные ресурсы, 1967, т. III. [2]. Быченкова Э. А. Некоторые данные о специфическом синтезе смол в каллюсах (пролифератах)

factor requirement of tobacco tissue cultures. — «Physiol. plant.», 1965, № 18. [29]. Loewenberg J. R. and Skoog F. Pine tissue culture. — «Physiol. plant.», 1952, v. 5. [30]. Murashige T. and Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. — «Physiol. plant.», 1962, № 15. [31]. R a gozinska J. Culture of scots pine callus and its nutritional requirement. — «Acta Soc. Bot. Polon», 1970, № 1. [32]. Reinert J. and White P. R. The cultivation in vitro of tumor tissues and normal tissues of Picea glauca. — «Physiol. plant.», 1956, № 2. [33]. Straus J. and Epp R. Response of Cupressus funebris tissue cultures to gibberellins.— «Science», 1960, № 3416. [34]. White P. R. Some aspects of differentiation in cell of Picea glauca cultivated in vitro. — «Am. J. Bot.», 1967, № 3. [35]. White P. R. and Risser P. G. Some basic parameters in the cultivation of spruce tissues.— «Physiol. plant.», 1964 № 3.

Поступила 5 марта 1976 г.

УДК 581.1

СЕЗОННЫЙ РИТМ СОДЕРЖАНИЯ ЗОЛЫ У ПОДРОСТА ХВОЙНЫХ И ХИМИЧЕСКИЙ СОСТАВ ХВОИ

Д. А. УСОВА

Архангельский лесотехнический институт

Рассматривается изменение зольности надземных частей подроста сосны, лиственницы, ели в течение двух вегетационных периодов и химический состав хвои в условиях северной части средней подзоны тайги.

Для успешного регулирования минерального питания древесных пород важно установить активность поглощения зольных элементов из почвы в течение вегетационного периода.

Цель нашей работы заключалась в выявлении сезонного ритма содержания золы и определении химического состава хвои 15—20-летнего подроста сосны, лиственницы ели. Работы проводили на территории учебно-опытного лесхоза Архангельского

	Год	Ī			Содержан	ие золы, %	на абс.
Порода	исследо- вания	9. V	29. V	10. Vi	20. VI	30. VI	11. VII
							По
Сосна	1969 19 70	2,4	4,5	12,0	6,0	3,0 8,5	3,5 3,4
Лиственница	1969 1970	3,3			 4,5	 6,0	5,3 4,7
Ель	1969 1970	2,8	<u></u>	13,0	 14,1	9,5 12,0	4,4 6,4
							Хвоя
Сосна	1969 1970	2,1		6,6	5,8	4,6	2,9 3,4
Лиственница	1969 1970	8,3			 4,3	5,0 11,1	3,8 5,5
Ель	1969 1970	3,0	_	<u> </u>	7,7	4,1 6,I	3,4 4,1

Примечание. 1) В связи с незначительными различиями приводятся средние побегах и хвое (исключая хвою лиственницы).

лесотехнического института (северная часть средней подзоны тайги). На сплошных вырубках второго десятилетня после рубки (исходный тип леса — сосняк черничный свежий) подбирали участки с подростом: без верхового затенения хвойных (объект-

1), хьойные под пологом молодой осины (объект 2). Кроме того, изучали подрост под пологом спелого сосняка черничного свежего (объект 3) и приспевающего березового древостоя со вторым еловым ярусом (коренной тип леса-ельник черничный све-

Почвы первых трех объектов — подзолы маломощные песчаные, развивающиеся на песке, подстилаемом тяжелым моренным бескарбонатным суглинком; на четвертом — почва слабоподзолистая легкосуглинистая, развивающаяся на легком суглинке,

подстилаемом легкоглинистой карбонатной мореной.

Образцы однолетних боковых побегов и хвои из средней части кроны собирали в

течение вететационных сезонов 1969 и 1970 гг.
При анализе зольных элементов в растениях были учтены методические указания Л. Е. Родина, Н. П. Ремезова, Н. И. Базилевич [5]. Проводили химический анализ

Вегетационные периоды 1969 и 1970 гг. резко различались по погодным условиям. Если 1969 г. был холодный и сухой (средняя температура воздуха за период вегетации равнялась 9,8°С, осадков выпало 184 мм), то 1970 г. — теплый и влажный (средняя температура воздуха 12,5°C, количество осадков — 315 мм)*.

Эти различия сказались на начале, интенсивности и продолжительности роста древесных пород. В 1969 г. рост растений начался позднее, чем в 1970 г. На 1 июля 1969 г. прирост боковых побегов изучаемых пород составил 21-29% от длины закончивших рост побегов, к этому же времени в 1970 г. — 48—100%. В 1969 г. интенсивный рост побегов в длину наблюдался с 1 по 10 июля (прирост в среднем по породам составил 60% от годичного). В 1970 г., при благоприятных погодных условиях, интенсивный рост побегов наблюдался в разное время: у сосны 2-5-я пятидневки июня (прирост - 56% от годичного); у лиственницы — 1-я половина июля (50%) и у ели — 2—6-я пятидневки июня (80%).

На периоды интенсивного роста побегов в длину приходится и наибольшее процентное содержание золы в них (табл. 1). По мере снижения прироста зольность побегов уменьшается.

Таблица 1

сухое веще	CLBO							_ В среднем
20, VII	31. VII	10. VIII	20. VIII	28. VIII	18. IX	18. X	10. XI	за сезон
беги								
2,7 2,5	2,5 4,9	2,4 3,7	2,8	2,3	2,8 2,6	2,3	1,8	2,6 4,6
3,0 5,6	3,5 4,7	2,8 4,1	4,7	- 3,5	1,8 3,2	2,6	2,3 —	3,0 4,4
4,4 6,8	4,2 6,2	4,5 5,8	 5,0	3,1	4,1 6,5	3,0	2,7	4,6 7,4
2,9 3,3	2,9 2,8	3,0 2,9	 2,9	 2,3	2,5 2,9	2,1	1,9	2,6
3,9 4,5	4,2 4,5	4,8 6,3	 6,1	- 7,4	6,8 7,6	<u>-</u>		4,7 6,6
3,2 3,6	3,0 3,2	3,4 3,5	3,9	 3,7	3,5 3,6	3,6	2,8 —	3,4 4.2

по объектам данные. 2) 9 мая 1970 г. определяли процент золы в прошлогодних

Данные метеостанции Емца, находящейся в 12—15 км от места проведения исследований.

В хвое изучаемых пород наибольший процент золы отмечен в начальные периоды ее роста, затем, по мере роста хвои в длину, содержание золы в ней уменьшалось. У лиственницы к осени зольность хвои снова возросла. В меньшей степени это выражено в хвое ели. Наци данные об изменении зольности хвои ели за вегетационный период близки к данным В. Г. Семеновой [6].

У сосны и ели в среднем за вегетационный период процентное содержание золы в побегах выше, чем в хвое, у лиственницы, наоборот, выше зольность хвои.

В литературе имеются различные суждения о влиянии погодных условий на содержание золы в растениях. Л. С. Литвинов и С. С. Колотова [1] считают, что засуха снижает поступление зольных веществ в надземные части растений вследствие уменьшения подачи воды кориями в эти органы. По данным А. А. Новиковой [3], в засушливые годы не обеспечивается нормальное использование зольных веществ в растениях, поэтому они постепенно накапливаются в надземных частях. По нашим данным, процентное содержание золы в надземных частях подроста в 1970 г. больше, чем в 1969 г., т. е. в сухом и холодном году поступление зольных веществ в растения снижается.

Содержание основных химических элементов в хвое сосны, лиственницы и ели определяли после завершения годичного прироста*. В хвое всех пород больше всего содержится азота (2,15-1,04%). Из зольных элементов первое место занимает калий (1,65-0,50%), затем кальций (0,77-0,22%), фосфор (0,62-0,19%), магний (0,34%-следы) — табл. 2.

Таблица 2

_		C	94			
Порода	Объект	Ŋ	К	Ca	P	Mg
			1969 г.			
Сосна	$\begin{bmatrix} 1\\2 \end{bmatrix}$	1,509 1,441	0,680 0,789	0,285 0,215	$0.239 \\ 0.207$	Следы
Лиственница	$\begin{vmatrix} 1\\2 \end{vmatrix}$	1,577 1,632	0,504 0.680	0,566 0,768	0,424 0,376	0,049 0,030
Ель	$\left \begin{array}{c}1\\2\\4\end{array}\right $	1,037 1,111 1,481	0,853 1,068 1,345	0,377 0,403 0,301	0,236 0,260 0,313	Следы
			1970 г.			
Сосна	$\left \begin{array}{c}1\\2\\3\end{array}\right $	1,447 1.451 1,318	0,815 1,018 0,853	0,257 0,249 0,316	0,196 0,230 0,194	Следы 0,036 0,031
Лиственница	1 2 3	1,884 2,148 1,739	0,679 1,164 0,794	0,742 0,707 0,727	0,502 0,619 0,469	0,343 0,329 0,295
Ель	1 2 3 4	1,190 1,215 1,092 1,123	1,219 1,193 1,216 1,651	0,613 0,627 0,528 0,462	0,269 0,267 0,265 0,308	0,077 0,063 0,121 0,122

На преобладание калия в хвое ели указывают и другие авторы [2, 6—8].

^{*} Листовой анализ выполнен в Архангельской областной агрохимической лаборатории.

Изученные породы обладают различной избирательной поглотительной способностью в отношении элементов питания. При одинаковых условиях произрастания (1970 г., объект 1) хвоя лиственницы содержит азота в 1,3 раза больше, чем хвоя сосны, и в 1,5 раза больше, чем хвоя ели. В хвое ели содержится калия в 1,5 раза больше, чем у сосны, и в 1,8 раза больше, чем у лиственницы. В хвое лиственницы в 1,2 раза больше кальция, чем в хвое ели, и в 3 раза больше, чем у сосны. Фосфора и магния у лиственницы также больше, чем у ели, и, особенно, у сосны.

Н. П. Ремезов и П. С. Погребняк [4] указывают, что у одной и той же породы содержание элементов питания значительно колеблется при

резко отличных почвенных условиях.

Химический анализ почвы показал, что в корнеобитаемом слое содержание P_2O_5 колеблется от 9,5 (горизонт A_0A_2 , объект 1) до 45,0 мг на 100 г почвы (горизонт A_0A_1 , объект 4); содержание K_2O изменяется соответственно от 32,0 до 135,0 мг на 100 г почвы. При таких различиях в почвенных условиях химический состав хвои у одной породы (ель, объекты 1 и 4) различается мало, хотя в общем прослеживается повышенное содержание всех элементов, кроме Са, при лучших почвенных условиях.

ЛИТЕРАТУРА

[1]. Литвинов Л. С., Колотова С. С. О поступлении и накоплении минеральных элементов в растении. — «Экспериментальная ботаника», 1934, сер. 4, вып. 1. [2]. Марченко А. И., Карлов Е. М. Минеральный обмен в еловых лесах Северной тайги и лесотундры Архангельской области. — «Почвоведение», 1962, № 7, [3]. Новикова А. А. Сезонный ритм роста и развития некоторых древесных пород. Автореф. канд. дисс. Минск, 1962. [4]. Ремезов Н. П., Погребняк П. С. Лесное почвоведение. М., «Лесная промышленность», 1965. [5]. Родии Л. Е., Ремезов Н. П., Базилевич Н. И. Методические указания к изучению динамики и биологического круговорота в фитоценозах. Л., «Наука», 1968. [6]. Семенова В. Г. Влияние рубок главного пользования на почвы и круговорот веществ в лесу. М., «Лесная промышленность», 1975. [7]. Смирнов В. В., Семенова В. Г. Содержание воды, органического веществи и зольных элементов в хвое различного возраста у ели обыкновенной. — «Лесоведейие», 1969, № 5. [8]. Чекалова М. И. Влияние свойств почвы на зольный состав однолетией хвои ели и листьев березы и рябины. — «Почвоведение», 1967, № 1.

Поступила 8 сентября 1976 г.

УДК 631.531.54

НЕКОТОРЫЕ ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА СЕМЯН СОСНЫ ОБЫКНОВЕННОЙ, ЕЛИ СИБИРСКОЙ И ЛИСТВЕННИЦЫ СИБИРСКОЙ

П. В. ПОНОМАРЕНКО, В. С. ПЕТРОВСКИЙ

Сибирский технологический институт Воронежский лесотехнический институт

Приведены результаты исследования размерных характеристик, углов естественного откоса и коэффициентов тренчя обескрыленных семян сосны обыкновенной, ели сибирской и лиственницы сибирской о различные рабочие поверхности.

Создание сеялки точного однозернового посева выдвигает задачу более глубокого по сравнению с прежними исследования размерных характеристик и некоторых физико-механических свойств лесных семян.

Наша задача заключалась в изучении размеров семян, установлении закона распределения и корреляционных связей между длиной, шириной и толщиной семян основных лесообразующих пород Восточной Сибири, а также в определении углов естественного откоса и коэффициентов трения семян о различные рабочие поверхности.

Физико-механические свойства семян сосны обыкновенной, ели сибирской и листмняко-механические своиства семян сосны обыкновенной, ели сиопрской и лиственницы сибирской изучали на партиях семян, полученных с Красноярской зональной лесосеменной станции. Семена собраны в 1974 и 1975 гг. в различных условнях местопроизрастания Красноярского края. Масса семени (средняя для 1000 шт.) сосны обыкновенной — 5,22 г, ели сибирской — 4,62 г, лиственницы сибирской — 7,50 г. Для определения длины, ширины и толщины семян применяли оптический проектор. Геометрические размеры измеряли с интервалом 0,1 мм. Предельная ошибка

измерения составила 0,05 мм. Величина выборки — 150 семян каждой породы.

При исследовании кривых распределения размеров семян их «нормальность» оценивали при помощи λ -критерия согласия А. Н. Колмогорова и показателей асиммет-

рии и эксцесса.

Определяли парные коэффициенты корреляции и находили уравнения регрессии, показывающие зависимость длины семени от ширины, толщины от длины и толщины от ширины. Существенность коэффициентов корреляции и корреляционных отношений определяли по t-критерию Стьюдента. Адекватность найденных регрессионных уравнений определяли с помощью F-критерия Фишера. Обработку данных проводили на ЭЦВМ «Минск-22».

Углы естественного откоса измеряли специальным прибором с универсальным угломером с точностью 0,5°. Для установления коэффициентов трения семян в покое использовали прибор, оборудованный угломером, представляющим подвижную наклонную плоскость, с рабочими поверхностями из листовой (тали и гладкой резины. Для определения коэффициентов трения семян о семена на подвижную плоскость прикленвали семена в один слой. Повторность измерений для каждой породы 20-

Экспериментальные данные о размерах семян сведены в табл. 1. Они согласуются с данными П. И. Войчаля для Архангельской области [1, 2].

Таблица 1

Порода	Размерные характери- стики	Крайние эначения, мм	Среднее значение X, мм	Среднее квадрати- ческое откло- нение о, мм	Коэффициент варнации V, %	Точность опыта Р, %	
Сосна обыкно- венная	Длина Ширина Толщина	3,1—5,0 2,8—1,8 1,0—1,9	4,04 2,25 1,35	0,36 0,22 0,17	8,6 9,6 12,3	0,7 0,8 1,0	
Ель сибирская	Длина Ширина Толщина	3,0—4,6 1,4—2,4 1,0—2,1	3,76 1,93 1,44	0,31 0,19 0,18	8,3 9,7 12,8	0,9 0,9 0,8	
Лиственница сибирская	Длина Ширина Толщина	3,6—6,3 2,0—3,9 1,3—2,3	4,91 2,94 1,80	0,52 0,32 0,18	10,7 10,8 9,9	0,7 0,8 1,1	

Проверка кривых распределения размеров семян по \(\lambda \)-критерию А. Н. Колмогорова показала, что эти кривые несущественно отклоняются от кривых нормального распределения. Значения показателей асимметрии и эксцесса не превышают трех своих ошибок.

Корреляционный анализ (табл. 2) размеров семян показал, что значения коэффициентов корреляции при P = 95% находятся в пределах 0,3-0,6. Все коэффициенты корреляции имеют положительный знак, что говорит о прямой связи между размерами семян, а значения корреляционных отношений не превышают существенно коэффициентов корреляции, следовательно, связь между признаками линейная.

Таблица 2

	Значения коэффицпентов связи между								
Порода	дянной и	шириной	длиной и	толщиной	шириной и толщиной				
	r	η	7	η	r	7			
Сосна обыкновенная Ель сибирская Лиственница сибирская	0,43 0,38 0,45	0,48 0,36 0,44	0,35 0,31 0,33	0,42 0,32 0,33	0,58 0,33 0,41	0,59 0,34 0,42			

Сравнение вычисленных и табличных значений t-критерия Стьюдента при 5%-ном уровне значимости дает основание сказать, что все коэффициенты корреляции и корреляционные отношения существенны.

Уравнения, наиболее подходящие для описания корреляционных зависимостей, выбирали из шести проанализированных типов уравнений по наименьшему значению остаточной дисперсии.

Примером полученных уравнений регрессии могут служить зависимости толщины семян от длины:

для сосны обыкновенной

$$T = 28,89 - 21,44 \mathcal{I} + 5,469 \mathcal{I}^2 - 0,4576 \mathcal{I}^3;$$

для ели сибирской

$$T = 0.7981 + 0.171 \mathcal{A};$$

для лиственницы сибирской

$$T = 1,251 + 0,1109 \mathcal{J}$$
.

Полученные значения углов естественного откоса семян согласуются с данными Г. А. Ларюхина [3] для семян сосны, собранных в европейской части СССР. Полученные экспериментально коэффициенты трения семян и углы естественного откоса (табл. 3) служат основанием для выбора конструктивных параметров сеялки.

Таблица 3

	Рабочие поверхности	Коэффициент трения				Угол естественного откоса			
Порода	трения	X	σ	P%	V%	X^0	G ⁰	P%	V°_5}
Сосна обыкновен-	Сталь листовая Резина гладкая Семена о семена	0,501 0,568 1,127	0,020 0,028 0,060	0,9 1,1 1,2	4,0 5,0 5,3	36,1	1,22	0,8	3,4
Ель сибирская	Сталь листовая Резина гладкая Семена о семена	0,470 0,513 1,090	0,016 0,015 0,058	0,8 0,7 1,2	3,4 2,9 5,4	33,8	1,67	1,1	4,4
Лиственница си- бирская	Сталь листовая Резина гладкая Семена о семена	0,446 0,533 1,150	0,023 0,024 0,043	5,1 4,6 3,2	1.1 1.0 0.9	37,2	1,38	3,7	0,8

Проведенные исследования показывают, что распределение семян сосны обыкновенной, ели сибирской и лиственницы сибирской по размерам подчиняется нормальному закону. Функциональная связь между размерами семян отсутствует, а корреляционная выражена средне. Найденные формулы регрессии позволяют определять ширипу семян по их длине, толщину по длине и толщину по ширине.

Полученные результаты исследования размерных характеристик и физико-механических свойств семян служат исходными данными для установления параметров сеялки точного посева.

ЛИТЕРАТУРА

[1]. Войчаль П. И. К вопросу о сортировании семян сосны и ели. — Сб. трудов Архангельского лесотехнического института, 1946, № 8. [2]. Войчаль П. И. Физикомеханические свойства семян хвойных пород. — Сб. трудов Архангельского лесотехнического института, 1940. [3]. Ларюхин Г. А. Свойства лесных семян как посевного материала для сеялок.— Труды ВНИИЛМа: Исследование рабочих процессов новых машин на лесокультурных работах. М., «Лесная промышленность», 1964, с. 5—30.

Поступила 7 июня 1976 г.

УДК 634.0.266

АГРОЛЕСОМЕЛИОРАЦИЯ И ЗАЩИТНОЕ ЛЕСОРАЗВЕДЕНИЕ В СССР

А. В. АЛЬБЕНСКИЙ

Брянский технологический институт

Агролесомелиорация во всех природных зонах СССР (даже в тундре, лесотумдре, в лесной зоне) имеет важное народнохозяйственное значение. Система посадок улучшает микроклимат, повышает на 10—20% урожай культур и трав, прекращает водную эрозию и пыльные бури.

Агролесомелиоративными мероприятиями невозможно переделать почву, климат, рельеф и т. д., но можно изменить интенсивность, направленность некоторых природных процессов, а иногда почти прекратить их проявление, например, задержать поверхностный сток вод, несколько изменить микроклимат и т. д. Агролесомелиораторов интересует состояние таких природных факторов, которые можно изменять: годовой ход температур воздуха, с учетом заморозков, засух, суховеев; условия перезимовки озимей, трав, плодовых деревьев, ягодников и т. д.; годовой ход выпадения осадков, с выделением метелей; направление и интенсивность ветров по сезонам года, особенно суховеев, пыльных бурь и холодных ветров за период вегетации; изменения влажности воздуха в течение года с определением периода низкой влажности во время вегетации; характер сезонного стока талых и ливневых вод. Мы сознательно не касаемся природных условий в горах и мероприятий по прекращению эрозии почв и неблагоприятных природных явлений.

Попытаемся по природным зонам определить возможность воздействия леса и леспых полос на природные факторы, имеющие важное значение для сельскохозяйственного производства и некоторых других отраслей народного хозяйства [1, 2, 40, 12, 13].

Тундра характеризуется кратким вегетационным периодом; почва переувлажнена, очень маломощная; зима длинная, снежная с метелями. Основная отрасль сельского хозяйства — оленеводство на подножных кормах. Возле городов имеются молочные фермы, овощные участки, парники, теплицы. Корма для коров частично заготовляют посевом трав и в массе привозят с юга.

Научными сотрудниками полярных сельскохозяйственных институтов и станций показана микроклиматическая роль кулис из стеблей для увеличения урожая овощей, роль кустарников в сохранении снега в поймах и в повышении сборов сена.

Увеличение количества и улучшение качества кормов может быть достигнуто осущением почвы, при отводе воды с коротких склонов. При

этом повышается температура почвы, прирост мелких деревьев и кустарников и улучшается их состояние. Снег не сносится ветром к пу-

тям транспорта.

На возможность улучшения роста деревьев и кустарников указывает бо́льшая высота деревьев и кустарников в поймах полярных рек, сравнительно с высотой на коренных берегах в зоне тундры и наличие древесных зарослей на полуострове Ямал, далеко вдающемся в Северный Ледовитый океан.

Лесотундра. Здесь действуют в основном те же вредоносные факторы, что и в тундре. Более южное местоположение и рельеф способствуют лучшему произрастанию деревьев и кустарников. Образуются редколесья. Развито оленеводство, овощеводство, производятся посевы кормовых трав для молочных коров.

В этой зоне надо всемерно сохранять древесно-кустарниковые заросли, в которых олени находят корм в зимнее время. Заросли возле путей сухопутного транспорта, поселков предохраняют их от снежных

заносов и северных холодных ветров.

Мелиораторы высказывают предположение, что осушение почвыв северных районах европейской части СССР будет способствовать ее отеплению и улучшению состояния растительности [4]. Так, к западу от Воркуты на откосах железнодорожной выемки (район станции Чум) имеется самосев ели сибирской в возрасте 20 лет, высотой около 1,5 м— на откосе южной экспозиции и около 1 м— на откосе северной экспозиции. По сторонам выемки проложены глубокие осущительные канавы. Древесно-жустарниковые заросли дают здесь хороший прирост и отлично защищают выемку от заноса снегом. Положительная роль осущения лесотундры канавами подчеркивается хорошим состоянием древесно-кустарниковых зарослей и трав на участках бывших лагерей строителей возле железнодорожной линии.

Лесная зона. Здесь развитию земледелия и других отраслей народного хозяйства сильно мешают ветры. Зимой они сносят снег с открытых полей, и возникает опасность вымерзания озимых посевов даже в южных областях Нечерноземья (например, в малоснежные зимы 1971—1974 гг. в Брянской области, когда вымерзли и многолетние

тпавы)

Данные кафедры лесных культур Брянского технологического института (1973—1975 гг.) показали повышение на 15—20% урожая зерновых культур в Смоленской и Брянской областях под влиянием лесных опушек, защищающих поля, в сравнении с урожаем на открытых полях или в центре полей. Для лесной зоны это доказано впервые.

Наблюдениями И. А. Гольцберг [5] под Ленинградом доказано благотворное микроклиматическое влияние стен леса на повышение дневных и небольшое понижение ночных температур воздуха и почвы.

Значительное влияние лесных полос на уменьшение скорости ветра, сохранение снега на полях и повышение урожая различных сельскохозяйственных культур отмечено в районах Мордовской АССР [6]. Полезащитные полосы уже выращиваются в Удмуртской АССР и на юге Пермской и Свердловской областей [9]. То же показано для Тульской области [11]. Это новое направление в развитии агролесомелиорации.

Влияние лесных опушек и лесных полос в Нечерноземье своеобразно. На юге, куда проникают засухи и суховеи, влияние их сходно с тем, что имеет место в степях, а в более северных районах установлено отепляющее влияние полос и опушек на воздух и почву, которое в

степях не наблюдается.

Здесь надо шире использовать благотворное влияние леса: при расчистках лесных зарослей под луга и пашни оставлять защитные лесные полосы. Большие поля необходимо защищать малорядными лесными полосами. Такие же меры необходимо проводить и на разрабатываемых торфяниках, впоследствии передаваемых в сельскохозяйственные угодья.

Лесная зона и эрозия почв. Еще до революции в Тульской, Рязанской, Горьковской, Пермской, Кировской и других областях для борьбы с водной эрозией на оврагах создавались водоспуски, водобойные колодцы и т. д., но не затрагивалось состояние пашни. Поэтому 50 лет назад в Орловской области А. С. Козменко [8] показал, что борьбу с эрозией почвы на пашне колхозов и совхозов следует начинать с противоэрозионного устройства территории. Этим определяются места посадки на склонах водорегулирующих, приовражных и прибалочных лесных полос и устройство водорегулирующих валов и характер агротехники земледелия. В настоящее время эти мероприятия определены постановлением ЦК КПСС и Совета Министров СССР о неотложных мерах по защите почв от ветровой и водной эрозии (1967 г.).

Сокращение поверхностного стока вод, прекращение переноса ила в реки и водохранилища положительно влияют на решение таких проблем, как защита рек и водохранилищ от абразии, обмеления, от заиления и заражения вод вредоносными бактериями.

Через лесную зону проходит водораздел, делящий Нечерноземье европейской части РСФСР на водосборы Северного Ледовитого океана, Балтийского, Черного и Каспийского морей. Нас интересуют водосборы рек, впадающих в последние два моря. Реки доставляют всем территориям, по которым они протекают, главную массу питьевой и оросительной волы.

В степях нет больших притоков у рек Днепра, Дона, Волги, Урала. Защитные полосы вдоль берегов рек теперь дополняются специальными посадками по русловым берегам, особенно малых рек [3], для предохранения их от разрушения и заиления грунтами русел рек.

Эти посадки переходят в категорию защитных приречных насаждений.

Лесостепь давно служит местом создания лесных полос на водораздельных пространствах. Водоохранная и водонакопительная роль естественных лесов на водосборах и в балках удачно дополняется действием лесных насаждений в поймах рек. Меры по борьбе с эрозией почвы, особенно на сельскохозяйственных угодьях, должны сочетаться с устройством на всех водотоках накопительных водохранилищ и последующим использованием их вод для полива овощных участков, садов и кормовых трав. Примером является Хорольский пруд в Каменной степи (ЦНИИ сельского хозяйства черноземной зоны им. Докучаева) и др.

Степи северные, на мощных черноземах, наиболее рентабельны для товарного земледелия европейской части СССР, в условиях неустойчивого количества осадков. Успехи земледелия снижаются иссущением почвы, вызванным сдуванием снега с полей сильными зимними ветрами, пыльными бурями весной и засухами и суховеями в период вегетации.

Многолетние исследования (в течение 80—90 лет) показали круглогодичное положительное действие системы полезащитных полосветроломов. В этой же природной зоне в 1877 г. возникло защитное лесоветроломов.

разведение вдоль железнодорожных путей (на Курской дороге), и та-

кие посадки теперь выращены во всех степях СССР.

На берегах больших водоемов создаются береговые защитные насаждения. В особенности перспективны противоабразивные посадки (опыты ВНИАЛМИ на Цимлянском и Волжском водохранилище у плотины ГЭС им. XXII съезда КПСС и УкрНИИЛХа на Каховском водохранилище). Развивается реконструкция пойменных лесов для защиты берегов от разрушения водными потоками.

Развиты посадки противоэрозионные и для сельскохозяйственных целей, например, на Нижнеднепровских песках, по Северному Донцу и в других местах. В защите воздушного бассейна и в украшении ландшафта успешны фиторекультивационные посадки на отвалах промышленных выработок. Они имеются и в лесостепи (северные области левобережья УССР, Курская и Белгородская области и др.), в лесной зоне Урала, в Тульской области и т. д.

В поясе сухих степей и северных пустынь полосные насаждения на экологических местоположениях с пресной водой и на незасоленных почвах увеличивают урожай посевов и трав. Особенно велико значе-

ние лесных полос на орошаемых землях.

Внедряются разработанные ВНИАЛМИ [7] защитные посадки животноводческого назначения— на пастбищах, у ферм и возле водопоев. Кустарниковые лесные полосы можно выращивать лишь по особой агротехнике: с глубокой пахотой и ведением хозяйства по типу садоводства.

Пустыня. Искусственные посадки успешны лишь в том случае, когда учтены экологические условия, даже при поливном озеленении. Так, например, Балхашский ботанический сад еще в 1935 г. разработал методику выращивания коллекций на каменистых местоположениях в глубоких траншеях, засыпанных грунтом из рек, впадающих в озеро, с обязательным поливом посадок пресной водой.

Поля в пустынях всегда защищаются от пыльных бурь и суховеев системами полезащитных полос, природными посадками, озеленительными насаждениями. Сформировался великолепный оазисный ландщафт — Голодная степь Узбекистана. На пустынных песках с пресной водой хорошо развиваются защитные лесные посадки для предохранения поселков, дорог, аэродромов, промышленных предприятий от заноса песками (район Небит-Дага и др.) и для защиты кормовых угодий.

К мелноративным лесным насаждениям следует отнести пригородные и санаторные лесопарки, санитарно-защитные зоны промышленных предприятий, посадки вдоль каналов, водоохранные леса в районах минеральных вод (Нарзан, Боржоми, Арзни, Анкаван, Нальчик и др.). Поэтому в решениях XXV съезда КПСС записано: «...осуществить мероприятия по защите почвы от водной и ветровой эрозии, особенно в южных и восточных районах страны» и далее «выполнить за пятилетие работы... по защитному лесоразведению на площади 1,4 млн. га» [12].

Итак, процесс формирования и фактическое развитие лесных ме-

лиораций можно представить следующим образом:

а) агролесомелиорация — служба леса сельскому хозяйству, преимущественно земледелию — осуществляется в нашей стране почти 150 лет. В нее входят разные виды защитных лесных полос на сельскохозяйственных угодьях;

б) лесная мелнорация—начала развиваться с переходом сельского хозяйства на социалистические рельсы. Усилились мероприятия по борь-

бе с водной и ветровой эрозней почв, с суховеями;

в) защитное лесоразведение — на территории СССР во всей полноте сложилось в последнее время. Все защитные посадки создают ландшафт коммунистического общества.

ЛИТЕРАТУРА

[1]. Агролесомелнорация. Изд. 4-е. М., «Лесная промышленность», 1972. [2]. Альбенский А. В. Сельское хозяйство и защитное лесоразведение. М., «Колос», 1972. [3]. Альбенский А. В. Рекомендации к методике изучения эрозионного состояния берегов малых рек в бассейне р. Десны. — В сб.: Судьба малых рек на примере бассейна Десны. Изд. филиала Географического общества СССР, Брянское отделение, 1975. [4]. Богушевский А. А. Дальнейшее развитие сельскохозяйственного производства в нечерноземной зоне РСФСР и задачи науки. М., изд. ВАСХНИЛ, 1975, [5]. Гольцберг И. А. Микроклимат и его значение в сельском хозяйстве. М., Гидрометеоиздат, 1957. [6]. Данилов А. А., Лобанов Д. А. Агролесомелиорация лесостепи. М., «Лесная промышленность», 1973. [7]. Қасьянов Ф. М. Защитное лесоразведение на пастбищах. — В сб.: Агролесомелиорации. Изд. 4-е. М., «Лесная промышленность», 1972. [8]. Козменко А. С. Приемы противоэрозионной мелнорации. Пособие для лесомелиораторов. Курское областное изд-во, 1937. [9]. Мочалкин Л. С., Харитонов Г. А. Лесомелнорация лесостепного Зауралья. М., Гослесбумиздат, 1967. [10]. О мерах по дальнейшему повышению эффективности сельскохозяйственной науки и укреплению ее связи с производством. — «Правда», 1976, 10 сентября. [11]. Попов К. И. Малорядные лесиые полосы и урожай. В сб.: Охрана природы и совершенствование бногеоценозов, вып. 2. Тула, 1974. [12]. Постановление XXV съезда КПСС по основным паправлениям развития народного хозяйства СССР на 1976—1980 гг. — Материалы XXV съезда КПСС. М., Политиздат, 1976. [13]. Советский Союз. Географическое описание в 22 томах. М., «Мысль», 1967—1972.

Поступила і ноября 1976 г.

№ 1

ЛЕСНОЙ ЖУРНАЛ

1977

ЛЕСОЭКСПЛУАТАЦИЯ

УДК 629.11.012.814

О ВЫБОРЕ РАСЧЕТНОЙ МОДЕЛИ ПРИ ИССЛЕДОВАНИИ ВЕРТИКАЛЬНЫХ КОЛЕБАНИЙ ЛЕСОВОЗНОГО АВТОПОЕЗДА

н. и. БИБЛЮК

Львовский лесотехнический институт

Изложены основные результаты аналитического исследования влияния связей между подрессоренными массами, неподрессоренных масс, упругих свойств пакета хлыстов и неодновременности воздействия на вертикальные колебания автомобиля и роспуска. Разработаны рекомендации по упрощению исходной расчетной модели, эквивалентной лесовозному автопоезду.

Лесовозный автопоезд представляет собой сложную колебательную систему, состоящую из ряда масс — пакета древесины, рам автомобиля и роспуска, колес, двигателя, кабины и др., соединенных между собой различного рода связями. При исследовании колебаний лесовозный автопоезд заменяется расчетной моделью, отображающей реальную колебательную систему. Степень отображения зависит от целей решаемой задачи, требуемой точности вычислений, класса и мощности используемых ЭВМ.

Для выявления возможности упрощения исходной расчетной модели, эквивалентной лесовозному автопоезду, нами исследовано влияние связей между подрессоренными массами, неподрессоренных масс, упругих свойств пакета хлыстов и неодновременности воздействия на вертикальные колебания автомобиля и роспуска.

Воздействие связей и параметров системы на ее колебания оценивали по величине и характеру изменения амплитудно-частотных характеристик (АЧХ), спектральных плотностей и средних квадратических значений ускорений подрессоренных масс. В качестве исходной использовали составленную ранее расчетную модель, эквивалентную связанной системе (автомобиль+роспуск+пакет хлыстов), схема и дифференциальные уравнения которой приведены в работе [1]. Исследованы автопоезда на базе лесовозного автомобиля типа МАЗ с одноосным рессорным и двухосным безрессорным роспусками. Вычисления выполняли на ЭЦВМ «Минск-22».

Мерой взаимной связи между колебаниями подрессоренных масс автопоезда служат коэффициенты связи, входящие в дифференциальные уравнения движения [1]. Значения этих коэффициентов обусловливаются распределением подрессоренных масс (моментов инерции и положений центров тяжести автомобиля и пакета хлыстов, положения коника на автомобиле). Коэффициенты распределения масс пакета хлыстов (отношение момента инерции к произведению массы пакета на координаты его центра тяжести) существенно зависят от длины хлыстов и их расположения на кониках автомобиля и роспуска. Для существующих типов лесовозных автопоездов они колеблются от 0,6 до 1,9.

Значения коэффициентов распределения и коэффициентов связи для рассматриваемых автопоездов приведены в табл. 1.

Таблица 1

		Значения коэффициентов связи колебаний						
Тип автопоезда на базе автомобиля МАЗ	Коэффициент распределения масс	передней части автомобиля		задней части автомобиля		роспуска с частями автомобиля		
		с задней	с роспус- ком	с передней	с роспус- ком	передней	задней	
С одноосным роспуском С двухосным	1,4	+ 0,087	0,027	+ 0,033	- 0,144	0,008	0,111	
роспуском	1,8	+ 0,076	0,055	+ 0,026	0,266	0,011	0,15	

Из табл. 1 видно, что для рассматриваемых автопоездов коэффициенты связи между подрессоренной массой передней части автомоби-

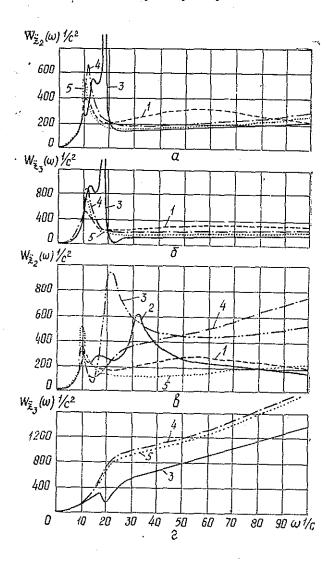
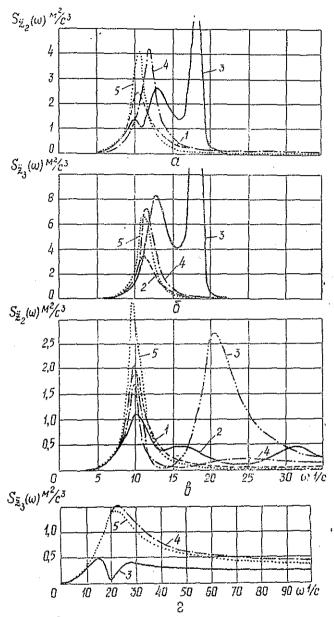



Рис. 1. АЧХ вертикальных ускорений подрессоренных масс.

а — автомобиля (с рессорным роспуском);
 б — рессорного роспуска;
 в — автомобиля (с безрессорным роспуском);
 г — безрессорного роспуска,
 I—5— номера расчетных схем.

Рпс, 2. Спектральные плотности вертикальных ускорений подрессоренных масс при скорости движения 4 м/с. Обозначения те же.

ля и остальными подрессоренными массами наименьшие (0,01—0,09). Коэффициенты связи между подрессоренными массами задней части автомобиля и роспуска значительно больше (0,11—0,27).

Сравнение AЧХ ускорений лесовозного автомобиля типа МАЗ, вычисленных с учетом и без учета взаимных связей между колебаниями его подрессоренных масс, показало, что пренебрежение связями приводит к изменению амплитуд ускорений передней части автомобиля на 12% и задней — на 3%.

На рис. 1 и 2 приведены AЧХ и спектральные плотности ускорений подрессоренных масс для исследуемых автопоездов, вычисленные на основании расчетных схем 1—5, которые составлены с учетом неподрессоренных масс (схемы 1 и 2), взаимных связей между подрессоренными массами задней части автомобиля и роспуска (схемы 2, 3 и

4) и упругих свойств пакета хлыстов (схемы 2 и 3).

Из рассмотрения кривых (рис. 1 и 2) можно заключить, что взаимная связь между колебаниями подрессоренных масс, как правило, существенно сказывается на величине АЧХ и спектральных плотностей и незначительно — на средних квадратических значениях ускорений автопоезда. Так, расхождение значений АЧХ ускорений задней части автомобиля, вычисленных на основании расчетных схем 4 и 5, в области низкочастотного резонанса составляет 20 и 49%, в области высокочастотного резонанса — 17 и 313%. При этом большие значения соответствуют автопоезду с двухосным роспуском, для которого коэффициент распределения масс пакета хлыстов выше. Расхождение значений АЧХ, вычисленных на основании расчетных схем 4 и 5, для роспуска несколько меньше, чем для автомобиля, и составляет для рессорного роспуска—15%, для безрессорного — 5%. Средние квадратические значения вертикальных ускорений задней части автомобиля и роспуска, вычисленные на основании расчетной схемы 5, на 4—9% ниже ускорений по схеме 4.

Упругие свойства пакета хлыстов весьма существенно изменяют величину и характер изменения АЧХ и спектральных плотностей. Расхождение значений АЧХ ускорений задней части автомобиля и роспуска, вычисленных с учетом (схема 3) и без учета (схема 4) упругих свойств хлыстов, в резонансных областях достигает 30—230% и больше. В связи с наличием упругих свойств пакета хлыстов средние квадратические значения ускорений подрессоренной массы автомобиля увеличиваются на 10%, а средние квадратические значения ускорений двухосного безрессорного роспуска уменьшаются на 60%, что согласуется с выводами работы [2].

Пренебрежение неподрессоренными массами, в случае жестких хлыстов, как правило, приводит к увеличению значений АЧХ ускорений подрессоренных масс автопоезда в области низкочастотного и уменьшению в области высокочастотного резонансов на 30—50%. При этом средние квадратические значения ускорений изменяются всего на 4—9%. В случае гибких хлыстов пренебрежение неподрессоренными массами вызывает увеличение значений АЧХ в резонансных областях в 1,8—3,9 раза и среднего квадратического значения ускорений подрес-

соренных масс — в 1,55 раза.

При вычислении значений АЧХ и спектральных плотностей ускорений подрессоренных масс автопоезда, приведенных на рис. 1 и 2, неодновременность воздействия неровностей на колеса автопоезда во внимание не принималась, что значительно облегчило анализ полученных кривых. Как видно из рис. 3, запаздывание наезда на неровности дороги колес роспуска по сравнению с колесами автомобиля приводит к заметному изменению характера протекания АЧХ ускорений задней части автомобиля и почти не сказывается на характере протекания АЧХ безрессорного роспуска. Значения АЧХ ускорений задней части автомобиля уменьшаются в области низкочастотного резонанса (в среднем на 15%) и увеличиваются в высокочастотной области (в среднем на 40%). Запаздывание наезда на неровности задних колес двухосного роспуска по сравнению с передними практически не сказывается на характере изменения кривых АЧХ ускорений автомобиля в низкочастот-

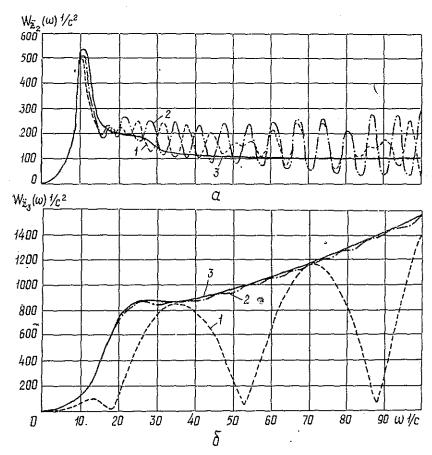


Рис. 3. AЧХ вертикальных ускорений, вычисленные на основании расчетной схемы 4, при скорости движения 7,5 м/с.

a — автомобиля (с безрессорным роспуском); b — безрессорного роспуска. l, b — с учетом запаздывания (роспуск соответственно двухосный и одноосный); b — без учета запаздывания,

ной области, но существенно влияет в области высоких частот на изменение характера АЧХ ускорений роспуска. В диапазоне скоростей движения 1—10 м/с неодновременность воздействия дороги на колеса роспуска уменьшает средние квадратические значения его ускорений на 25-45%.

На основании выполненных исследований можно сделать следующие выводы:

при аналитических исследованиях вертикальных колебаний лесовозного автопоезда связанные колебания задней части автомобиля и роспуска можно рассматривать независимо от колебаний передней части автомобиля, как обычно и поступают в подобных случаях [3] (погрешность в вычислении ускорений не будет превышать 1-4%);

колебания роспуска (в случае жестких хлыстов) могут рассматриваться независимо от колебаний задней части автомобиля только при исследованиях, не требующих высокой точности вычислений (ожидаемая погрешность 4—15%);

колебания задней части автомобиля при вычислении амплитуд ускорений необходимо рассматривать совместно с колебаниями роспуска; в случае жестких хлыстов при вычислении средних квадратиче-

ских значений ускорений колебания задней части автомобиля можно рассматривать независимо от колебаний роспуска (ожидаемая погрешность 5—9%);

пренебрежение упругими свойствами пакета хлыстов недопустимо, так как может внести весьма существенные погрешности в вычисление характеристик и параметров колебаний подвижного состава;

пренебрегать неподрессоренными массами можно только при вычислении средних квадратических значений ускорений в случае жестких хлыстов (ожидаемая погрешность 4—9%);

неодновременность воздействия дороги на колеса автомобиля и роспуска необходимо учитывать при вычислении амплитуд ускорений автомобиля и можно не рассматривать при исследовании колебаний роспуска (ожидаемая погрешность — до 4%); при вычислении средних квадратических значений ускорений задней части автомобиля погрешность от пренебрежения неодновременностью воздействия не превышает 10—15%:

пренебрежение неодновременностью воздействия дороги на колеса двухосного балансирного роспуска приводит к весьма существенным погрешностям в вычислении амплитуд ускорений роспуска и поэтому недопустимо; при определении средних квадратических значений ускорений подрессоренных масс лесовозного автопоезда представляется возможным пренебречь неодновременностью воздействия дороги на колеса двухосного роспуска, полагая среднее квадратическое значение высот неровностей микропрофиля сниженным на 25—45%.

ЛИТЕРАТУРА

[1]. Гастев Б. Г., Библюк Н. И. Статистическое исследование вертикальной динамики связанной системы.— В сб.: Лесная, бумажная и деревообрабатывающая промышленность, вып. 4. Кнев, «Будівельник», 1967. [2]. Лах Е. И. Исследование вертикальной динамики лесовозного автомобильного поезда.— Труды ЦНИИМЭ, XIV, вып. 3. М., Химки, 1960. [3]. Жуков А. В., Леонович И. И. Колебания лесотранспортных машин. Минск, изд-во БГУ, 1973.

Поступила 7 июня 1976 г.

УДК 634.0.361.7

ИССЛЕДОВАНИЕ КОНСТРУКТИВНЫХ ПАРАМЕТРОВ ОКОРКИ ДРЕВЕСИНЫ ИМПУЛЬСНЫМИ ГИДРАВЛИЧЕСКИМИ СТРУЯМИ*

Г. Ф. КИСЛИЦЫНА

Марийский политехнический институт

Приводятся результаты лабораторных исследований по окорке древесины импульсными струями. В опытах использована методика рационального планирования эксперимента. Определены эмпирические уравнения влияния тангенциального и вертикального углов встречи рабочей струи с древесиной, диаметра насадка и скорости подачи образца на прочесс окорки древесины.

Цель пашего исследования — изучение влияния конструктивных параметров окорочной установки, состояния коры и некоторых харак-

^{*} Работа выполнена под руководством доктора техн. наук, проф. Ю. Я. Дмитриеба.

геристик импульсных жидках струй на процесс гидравлической окорки древесины. При заданной производительности энергоемкость установки с продольной подачей древесины в обработку и кольцевым расположением насадков определяется шириной полосы коры, удаленной за один проход перед насадком. Увеличение объема работы, выполняемой одним насадком постоянного сечения при постоянном давлении струи, позволяет уменьшить их число, а следовательно, сократить расход жидкости и энергозатраты на окорку 1 м³ сырья. Большое значение приобретает изучение влияния углов атаки струи, диаметра среза струеобразующего насадка, скорости горизонтальной подачи обрабатываемого образца, влажности коры, импульсно изменяющегося давления жидкости перед насадком, частоты пульсации давления на изменение ширины окоренной полосы В.

Опыты проводили на установке гидроимпульсной окорки древесины [2]. Образцы сосны осенней заготовки диаметром 0,24—0,28 м и длиной 0,5 м закрепляли в центрах подающей тележки на расстоянии 50 диаметров выходного сечения насадка. Давление жидкости перед насадком замеряли с помощью датчика давления типа ТДД по максимальному значению в импульсе, затем фиксировали одним из каналов осциллографа Н-700.

Выполнено две серии опытов. Опыты первой серии проведены при максимальном давлении в импульсе $9.7\,$ мН/м², давлении в системе $3.45\,$ мН/м², частоте следования импульсов высокого давления $f=19\,$ Гц, постоянной влажности обрабатываемых образцов 82%. Опыты второй серии проведены при постоянных значениях диаметра среза струеобразующего насадка $d_0=0.006\,$ м и углов атаки струи $\alpha=\beta=90^\circ$. Ширину окоренной полосы B, в пределах которой полностью удалены корка, луб и камбий, чисто обмыты сучья, измеряли гибкой линейкой (окорку без удаления луба при измерениях не учитывали).

Использована методика рационального планирования эксперимента [4]. За основу принят метод латинского квадрата. Схема планирования опытов составлена для четырех факторов и пяти вариантов каждого из них: 1) тангенциальный угол атаки $\alpha=0.995;\ 1,135;\ 1,255;\ 1,43;\ 1,57;\ 2)$ вертикальный угол встречи = 0,523; 0,784; 1,045; 1,31; 1,57 рад; 3) диаметр среза насадка $d_0=0.0031;\ 0,004;\ 0,005;\ 0,0055;\ 0,0058$ м; 4) скорость горизонтальной подачи $v=0.117;\ 0.4;\ 0.74;\ 0.94;\ 1,4$ м/с.

Планирование обытов второй серии: 1) максимальное давление в импульсе переменного давления перед насадком $P_{max}=8.0;\ 9.0;\ 10;\ 10.5;\ 11\ мH/м²;\ 2)$ частота пульсации давления $f=19;\ 38;\ 48;\ 62;\ 123\ Гц;\ 3)$ влажность коры $W=40,\ 50,\ 60,\ 70,\ 80\%;\ 4)$ скорость горизонтальной подачи образца $v=0,117;\ 0.4;\ 0.74;\ 0.94;\ 1.4\ м/с.$

Опыты проводили при одном из 25 возможных сочетаний четырех факторов. Каждый запланированный эксперимент, включающий 5 замеров, повторяли 10 раз. Полученные результаты обработаны методами математической статистики [3] на ЭВМ «Наири-С». Определено соответствие полученных вариационных рядов закону нормального распределения. Среднее квадратическое отклонение: 1) 0,0007—0,00774; 2) 0,64—3,525; показатель асимметрии: 1) 0,2-1,86; 2) 0,007—0,37; показатель эксцесса: 1) 0,1—2,36; 2) 0,36—1,84; вариационный коэффициент: 1) 2,7—14,3; 2) 0,73—10,2; показатель точности: 1) 0,85—3,83; 2) 0,62—4,08.

Для оценки влияния на процесс окорки древесниы каждого фактора в отдельности применен дисперсионный анализ. Степень достоверности влияния отдельного фактора определена по критерию Фишера [5]. Табличное значение его равно 2,6 при числе повторности наблюдений 10, числе уровней 5 и допустимой ошибке 5%. Для каждого изучаемого фактора получено: 1) $F_1 = 7.68$; $F_2 = 3.72$; $F_3 = 14.7$; $F_4 = 14.2$; 2) $F_1 = 3.16$; $F_2 = 7.34$; $F_3 = 2.86$; $F_4 = 11.37$. Вычисленные по экспериментальным данным значения критерия Фишера больше табличного, следовательно, каждый из изучаемых факторов оказывает влияние на процесс окорки древесины.

По средиим значениям строили предварительные графики зависимостей ширины окоряемой полосы *B* от исследуемых факторов. По этим графикам выясняли общий вид соответствующего эмпирического уравнения [1, 6], для которого с помощью метода наименьших квадратов определяли коэффициенты регрессии.

Частные зависимости описываются для отдельных независимых параметров следующими уравнениями (рис. 1):

$$B_1 = -0.08967 + 0.17343\alpha - 0.06024\alpha^2; \quad \Delta_1 = 11.9\%; \tag{1}$$

$$B_2 = -0.00752 + 0.07708\beta - 0.63414\beta^2; \quad \Delta_2 = 0.48\%; \tag{2}$$

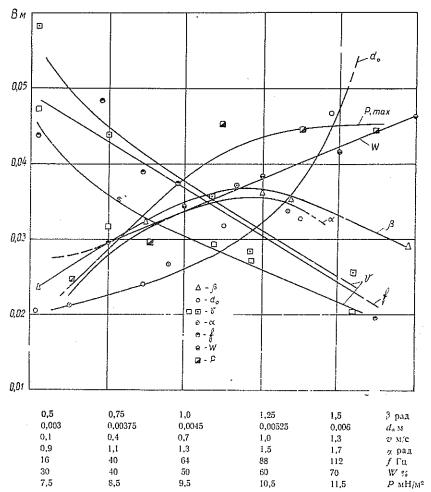


Рис. 1. Зависимость ширины окоренной полосы от параметров окорочной установки.

$$B_3 = -0,0000181e^{1256,34d_0} + 0,01845; \quad \Delta_3 = 6.5\%;$$
 (3)

$$B_4 = 0.033027e^{-2.40265v} + 0.02144; \quad \Delta_4 = 7.6\%;$$
 (4)

$$B_1^{\rm I} = -0,264f + 53,11; \quad \Delta_1^{\rm I} = 6,43\%;$$
 (5)

$$B_2^{\rm I} = 2,9169 \, W^{0,62855}; \quad \Delta_2^{\rm I} = 1,02\%;$$
 (6)

$$B_{3}^{I} = -183,82 + 3,96P_{max} - 0,0171P_{max}^{2}; \quad \Delta_{3}^{I} = 6,32\%;$$

$$B_{4}^{I} = 58,4125e^{-0,65368v}; \quad \Delta_{4}^{I} = 6,26\%.$$
(8)

$$B_4^{\rm I} = 58,4125e^{-0.65368v}; \quad \Delta_4^{\rm I} = 6,26\%.$$
 (8)

Общее регрессионное уравнение с четырьмя факторами было получено как произведение частных уравнений

$$B = (-0.08967 + 1.7343\alpha - 0.6024\alpha^{2}) (-0.0752 + 0.7708\beta - 0.3414\beta^{2}) (0.000608e^{1256.34d_{0}} + 0.6183) (0.33027 e^{-2.46265v} + 0.2144);$$
(9)

$$B^{I} = (-0.007f + 1.405) W^{0.6286} e^{-0.6537v} (-21.6 + 0.2144);$$
(9)

$$+0.465P_{max}-0.002P_{max}^{2}$$
 (10)

Уравнения (9), (10) — математическая модель режима окорки древесины импульсными гидравлическими струями для заданной области изменения выбранных параметров. Из анализа данной модели найдены оптимальные значения углов атаки струи, соответствующие максимальной производительности по площади коры, удаляемой одним насадком ($\alpha = 1.4 \div 1.5$ рад; $\beta = 1.1$ рад). Выведены зависимости (1)—(8) изменения ширины снятой полосы коры от скорости подачи древесины под струю, диаметра струеобразующего насадка, частоты следования импульсов высокого давления, влажности коры, максимального давления в импульсе.

Характер зависимостей (1)—(8) в общем виде сохраняется для различных пород, сочетаний и интервалов изменения параметров окорки древесины импульсными гидравлическими струями, что позволяет использовать результаты исследований при разработке конструкции гидроимпульсной окорочной машины производственного типа. Наблюдения показывают, что определенной горизонтальной скорости подачи соответствует конкретное значение максимального давления в импульсе. При скорости подачи 0,117 м/с, частоте 48 Гц и $P_{max} = 9,0$ мН/м² наблюдаются незначительные повреждения древесины (глубиной 0,001 м). При скоростях подачи v = 0,4 м/с повреждения наблюдаются при $P_{max} = 10,5$ мН/м² и f = 62 Гц, при скорости подачи 0,74 м/с и f = 20 Гц — при $P_{max} = 12$ мН/м². Для скорости горизонтальной подачи v = 1,4 м/с повреждений древесины не было во всем диапазоне исследуемых частот и давлений.

ЛИТЕРАТУРА

[1]. Демидович Б. П., Марон Н. А., Шувалова Э. З. Численные методы анализа. М., Физматгиз, 1963. [2]. Дмитриев Ю. Я., Кислицына Г. Ф. Окорка лесоматериалов импульсными гидравлическими струями. — «Лесная промышленность», 1975, № 2, с. 28. [3]. Леонтьев Н. Л. Техника статистических вычислений. М., «Лесная промышленность», 1966. [4]. Протодьяконов М. М., Тедер Р. И. Методика рационального планирования эксперимента. М., «Наука», 1970. [5]. Пустыльник Е. И. Статистические методы анализа и обработки наблюдений. М., «Наука», 1968. [6]. Фильчаков П. Ф. Численные и графические методы прикладной математики. Справочник. Киев, «Наукова думка», 1970.

Поступила 7 июня 1976 г.

УДК 634.0.383

ВАЖНАЯ ПРОБЛЕМА СОВЕРШЕНСТВОВАНИЯ ЛЕСОВОЗНЫХ АВТОМОБИЛЬНЫХ ДОРОГ

В. И. МЕЛЬНИКОВ

Московский лесотехнический институт

Рассматривается вопрос об оптимальном сочетании типов автомобильных лесовозных поездов и соответствующих им конструкций дорожных покрытий, при котором может быть достигнут минимум суммарных приведенных затрат. Приводится модель этой задачи и доказывается возможность ее экстремального решения.

Лесовозные автомобильные дороги — ведущий тип промышленного транспорта в лесозаготовительной отрасли народного хозяйства; в настоящее время они обеспечивают около 80% общего объема вывозки леса. В развитии этого типа дорог за последние годы наблюдаются две ярко выраженные тенденции: ежегодное увеличение средней дальности вывозки и возрастание веса лесовозных поездов с применением более тяжелых автотягачей.

В свою очередь, увеличение дальности вывозки леса приводит к возрастанию размеров грузовой работы и потребных размеров дорожного строительства, а применение более тяжелых автотягачей вызывает необходимость существенного усложнения конструкций дорожных одежд, что соответственно повышает стоимость строительства 1 км автодорог. Эти обстоятельства приводят к весьма существенному росту затрат на дорожное строительство, что, в свою очередь, вызывает увеличение потребных капиталовложений или возрастание стоимости вывозимой древесины, если расходы на строительство относят на себсстоимость древесины.

Здесь закономерен вопрос, следует ли стремиться к дальнейшему наращиванию веса автомобильных поездов с соответствующим увеличением нагрузок на оси, нельзя ли ограничить дальнейшее возрастание мощности автотягачей, а вместе с тем осевых нагрузок и найти оптимальные соотношения между весом лесовозных автомобильных поездов и соответствующими им типами дорожных покрытий. Как известно, основные лесоизбыточные районы, где размещается подавляющее большинство лесовозных автомобильных дорог, расположены в зоне неблагоприятных почвенно-климатических условий, что затрудняет строительство сети достаточно совершенных лесовозных путей.

Итак, по нашему мнению, для лесовозных автомобильных дорог уместно применить принцип оптимального сочетания веса автомобильных поездов (и соответствующих им автотягачей) и конструкций дорожных покрытий с надлежащими затратами, при котором будет обе-

спечен минимум суммарных затрат, например приведенных.

Суммарные приведенные затраты имеют два основных слагаемых: расходы на эксплуатацию — Э и долю первичных затрат на сооружение дорог (долю капитальных вложений) — ЕК. В нашем случае задача может быть сформулирована следующим образом: найти оптимальное сочетание типов автомобильных поездов (и соответствующих нагрузок на ось) и конструкций автомобильных дорог (тип, размеры и стоимость дорожной одежды), исходя из условия, что удельные суммарные приведенные затраты (р./т или р./м³) минимальны. Это условие можно выразить так:

$$S = \partial + EK = \min, \tag{1}$$

где $S = C\Pi 3$ — удельные суммарные приведенные затраты, р./(м 3 ·год); ∂ — удельные эксплуатационные затраты на содержание и ремонт автомобильной лесовозной дороги в течение года, р./год;

$$\partial = \frac{\Sigma \partial}{Q}$$
,

здесь $\Sigma \mathcal{D}$ — сумма годовых эксплуатационных затрат;

Q — годовой грузооборот, м 3 /год;

К — капиталовложения (или первичные затраты на строительство, если оно выполняется за счет себестоимости) на строительство лесовозной автодороги, приходящиеся на 1 м³ вывозимой древесины, р./м³;

E — коэффициент эффективности вложений (для лесозаготовительной промышленности E=0,12).

Предположим, что суммарные удельные приведенные затраты являются функцией нагрузки на ось автомобильных поездов p, т. е.

S = f(p). Для этого каждое слагаемое правой части уравнения (1) выразим через p. Допустим, что

$$p_1 > p_2 > p_3,$$
 (2)

здесь p_1, p_2, p_3 — конкретные значения нагрузок на оси лесовозных поездов.

При поставленном выше условии будем иметь, что

$$K_1 > K_2 > K_3, \tag{3}$$

где K_1, K_2, K_3 — затраты на постройку автомобильных дорог соответ ствующих типов, отвечающих нагрузкам p_1, p_2, p_3 .

Допустим, что значения K возрастают пропорционально p согласно зависимости

$$K = a_1 + b_1 p + c_1 p^2. (4)$$

Если пренебречь последним слагаемым правой части, то уравнение (4) примет вид

$$K = a_1 + b_1 p. \tag{4a}$$

Теперь вполне логично предположить, что с повышением качества дорожного покрытия, характеризуемого величиной K, расходы на содержание пути $\mathcal F$ будут уменьшаться, $\mathcal F$. e.

$$\partial_1 < \partial_2 < \partial_3, \tag{5}$$

здесь ∂_1 , ∂_2 , ∂_3 — расходы на эксплуатацию дороги, включающие расходы по содержанию путей и расход на горючее (который обратно пропорционален качеству пути), соответствующие затратам K_1 , K_2 , K_3 .

Таким образом, между величинами Э и К существует обратная пропорциональность, которая может быть выражена формулой

$$\beta = \frac{a}{b_2 + c_2 K} \,. \tag{6}$$

Подставляя значение K из формулы (4) в (6), получаем

$$\partial = \frac{a}{b_2 + c_2 (a_1 + b_1 p + c_1 p^2)} . \tag{6a}$$

Обозначив в этом уравнении

$$b = b_2 + c_2 a_1;$$

 $c = c_2 b_1;$
 $d = c_2 c_1,$

будем иметь

$$\beta = \frac{a}{b + cp + dp^2} \,. \tag{66}$$

После подстановки значений $\mathcal G$ и K из уравнений (4) и (6б) в (1), находим

$$S = \frac{a}{b + cp + dp^2} + E(a_1 + b_1 p + c_1 p^2). \tag{7}$$

Для получения экстремальных значений этого уравнения возьмем первую производную

$$\frac{dS}{dp} = \frac{-a(c+2dp)}{(b+cp+dp^2)^2} + E(b_1+2c_1p).$$

^{4 «}Лесной журнал» № 1

Если принять
$$\frac{dS}{dp} = 0$$
, то

$$E(b_1 + 2c_1p)(b + cp + dp^2) - a(c + 2dp) = 0$$

или

$$Ap^{5} + Bp^{4} + Cp^{3} + Dp^{2} + Fp - G = 0,$$
 (8)

где

$$A = 2c_1d^2E;$$

$$B = Ed (b_1d + 4cc_1);$$

$$C = 2E (b_1cd + 2bc_1d + c_1c);$$

$$D = E (4bcc_1 + 2bb_1d + b_1c^2);$$

$$F = 2 (Ebb_1c + b^2c_1E - ad);$$

$$G = Eb^2b_1 - ac.$$

Уравнение (8) в общем виде, как известно, не решается. Значения p могут быть найдены лишь при определенных коэффициентах A,B, C,D...

Однако для некоторых конкретных условий функция K=f(p)может быть линейной, тогда после подстановки значения K из уравнения (4а) в (1) получим

$$S = \frac{a}{b_2 + c_2(a_1 + b_1 p)} + E(a_1 + b_1 p) = \frac{a}{b + cp} + E(a_1 + b_1 p)$$
(9)

и соответственно

$$\frac{dS}{dp} = -\frac{ac}{b^2 + 2bcp + c^2p^2} + Eb_1,$$

откуда при $\frac{d\dot{S}}{dn} = 0$

$$c^{2}p^{3} + 2bcp + b^{3} - \frac{ac}{Eb_{1}} = 0.$$
 (10)

Корни этого уравнения, соответствующие минимуму приведенных затрат, могут быть легко определены.

Изложенное позволяет сделать следующие выводы.

1. Оптимальное сочетание типов лесовозных автомобильных поездов и соответствующих им дорожных покрытий следует рассматривать как важную технико-экономическую задачу лесотранспорта.

2. При определенных условиях эта задача может быть строго формализована — уравнения (1), (7) и (9).

3. Функциональная зависимость S=f(p) имеет экстремальные значения (минимум), которые могут быть вычислены при выявленных предварительно зависимостях K(p) и $\Im(K)$.

4. Поставленная задача оптимизации в последующем может быть расширена путем увеличения количества одновременно действующих факторов, например, с учетом производительности дороги.

1977

УДК 625.11

No 1

ОПРЕДЕЛЕНИЕ НЕРОВНОСТЕЙ РЕЛЬСО-ШПАЛЬНОЙ РЕШЕТКИ НА ЗАКРУГЛЕНИЯХ ПУТИ В ПЛАНЕ

С. И. МОРОЗОВ, М. В. ПОПОВ

Архангельский лесотехнический институт

Предложена методика определения неровностей рельсошпальной решетки на закруглениях пути в плане. Приведен пример расчета.

Устойчивость температурно-напряженного железнодорожного пути существенно зависит от его неровностей (отклонений оси рельсов или оси рельсо-штальной решетки от проектного положения) [1]. Методика определения размеров неровностей на прямых участках лесовозных узкоколейных железных дорог рассмотрена нами ранее [2]. Ниже приведена методика расчета неровностей на закруглениях пути в плане.

Исходные данные, характеризующие положение оси пути в плане, получены на нескольких лесовозных УЖД объединения Архангельсклеспром в 1975 г. При определении положения оси пути в плане внутри колеи пути на закруглении разбивали ломаную линию (базис) и закрепляли ее на местности с помощью проволочных растяжек (рис. 1, a). На каждом участке линии измеряли расстояние до внутренней боковой грани головки рельса левой и правой нити. Полусумма этих расстояний определяет положение точек, лежащих на фактической оси пути, а полуразность — расстояние от фактической оси до базисной линии.

Неровность оси пути на закруглении — это величина отклонения фактической оси пути от расчетной круговой кривой, которую в первом приближении можно выразить уравнением параболы

$$y = \frac{l}{2\rho} x - \frac{x^2}{2\rho},\tag{1}$$

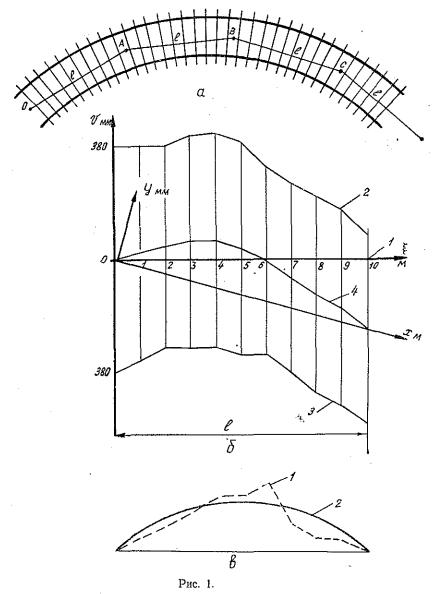
где

средний радиус закругления;

l — длина участка;

х, у — абсцисса и ордината отдельной точки.

При определении среднего радиуса закругления на данном участке пути необходимо аппроксимировать фактическую ось уравнением (1), например, по методу наименьших квадратов. Предварительно, используя формулы аналитической геометрии, нужно перейти от системы координат v, v, к системе v, v, в которой составлено уравнение (1). Положение исходной и расчетной систем координат показано на рис. 1, v, возможны два способа аппроксимации. Каждый из них имеет свои преимущества и недостатки, которые рассмотрены ниже.


Первый способ. Крайние точки фактической оси пути лежат на круговой кривой. Расчетное уравнение, составленное по методу наи-

меньших квадратов, имеет вид

$$\rho = \frac{2l\Sigma x_i^3 - l^2\Sigma x_i^2 - \Sigma x_i^4}{2\left(\Sigma x_i^2 y_i - l\Sigma x_i y_i\right)}.$$
 (2)

По этому уравнению находят средний радиус закругления, затем по уравнению (1) — ординаты точек круговой кривой. Разность между фактическими и расчетными ординатами равна величине неровности пути в данном сечении. Пример расчета неровностей для одного из

 4^{*}

 α — разбивка ломаной линии внутри кривой; δ — определение положения оси пути; I — исходная ось (база); 2, 3 — левый и правый рельсы; 4 — фактическая ось пути; a — фактическая (I) и расчетная (I) оси пути.

участков приведен в табл. 1. Положение фактической и расчетной оси пути показано на рис. 1, s.

Вычисления, сделанные по рассмотренной методике, показали, что радиусы кривых для соседних участков могут изменяться весьма значительно (например, $\rho_1=654$ м, $\rho_2=562$ м, $\rho_3=227$ м). Это свидетельствует о неудовлетворительном содержании пути на закруглениях в плане.

По первому способу можно найти средний радиус закругления не только на каждом участке, но также для нескольких участков. Это необходимо в связи с тем, что длина изогнутого участка пути обычно больше длины одного участка базовой линии.

Т	а	б	л	и	u	а	- 1

Расстояние по оси	Измеренно ние до р	е расстоя- ельсов, мм	Отклоне пути		Координаты		
$\xi_i (x_i),$	jeBoro	правого	от базис- ной линии (♡ _i)	от о́сн х (У _t)	точек круго- вой кривой, мм	Неровность оси пути, мм	
0 1 2 3 4 5 6 7 8 9	380 380 380 384 385 382 362 365 360 360 340	380 375 370 370 370 373 373 390 398 403 413	0 2,5 5,0 7,0 7,5 4,5 4,5 -12,5 -19,0 -24,0 -32,5	0 5,75 11,50 16,75 20,50 20,75 24,00 10,25 7,00 5,25	0 4,9 12,2 16,0 18,3 19,1 18,3 16,0 12,2 6,9 0	$\begin{array}{c} 0 \\ -1,15 \\ -0,70 \\ +0,75 \\ +2,20 \\ +1,65 \\ +5,70 \\ -5,75 \\ -5,20 \\ -1,65 \\ 0 \\ \end{array}$	

 Π р и м е ч а и и е. Неровности, расположенные внутри кривой, считаются отрицательными.

Рассмотрим способ, позволяющий найти средний радиус закругления для двух участков. Расчетная схема показана на рис. 2, a. В точке соприкосновения участков они имеют общую касательную. Чтобы применить уравнение (1), нужно от исходных систем координат x_1 , y_1 и x_2 , y_2 перейти к общей для обоих участков системе X, Y Координаты точек, лежащих на фактической оси пути, определим по формулам (рис. 2, 6):

на первом участке

$$X_1 = x_1 \cos \varphi_1 - y_1 \sin \varphi_1; \tag{3}$$

$$Y_1 = x_1 \sin \varphi_1 + y_1 \cos \varphi_1; \tag{3a}$$

на втором участке

$$X_2 = l_1 \cos \varphi_2 + x_2 \cos \varphi_2 + y_2 \sin \varphi_2; \tag{4}$$

$$Y_2 = l_1 \sin \varphi_2 - x_2 \sin \varphi_2 + y_2 \cos \varphi_2. \tag{4a}$$

Углы φ1, φ2, β1, β2, α связаны зависимостями

$$l_1 \sin \varphi_1 = l_2 \sin \varphi_2; \tag{5}$$

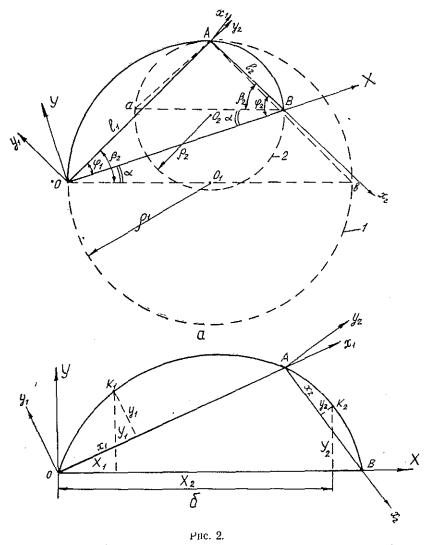
$$\varphi_1 = \beta_1 - \alpha; \quad \varphi_2 = \beta_2 + \alpha. \tag{6}$$

Решая совместно уравнения (5) и (6), получим

$$\sin^2\alpha = \frac{(l_1\sin\beta_1 - l_2\sin\beta_2)^2}{l_1^2 + l_2^2 + 2l_1l_2\cos(\beta_1 + \beta_2)}.$$
 (7)

В частном случае, когда $l_1=l_2$, имеем $\varphi_1=\varphi_2$ и

$$\alpha = \frac{1}{2} (\beta_1 \pm \beta_2).$$


Уравнения, определяющие средний радиус закругления на первом н втором участках в системе X, Y имеют вид

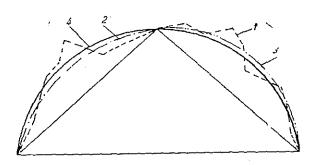
$$\rho_{1} = \frac{2X_{0}\Sigma X_{1l}^{3} - X_{0}^{2}\Sigma X_{1l}^{2} - \Sigma X_{1l}^{4}}{2\left(\Sigma X_{1l}^{2}Y_{1l} - X_{0}\Sigma X_{1l}Y_{1l}\right)}; \tag{8}$$

$$\rho_2 = \frac{2X_0 \Sigma X_{2i}^3 - X_0^2 \Sigma X_{2i}^2 - \Sigma X_{2i}^4}{2 \left(\Sigma X_{2i}^2 Y_{2i} - X_0 \Sigma X_{2i} Y_{2i} \right)}, \tag{9}$$

где

$$X_0 = l_1 \cos \varphi_1 + l_2 \cos \varphi_2.$$

a — схема перехода от систем координат x_1 , y_1 и x_2 , y_2 к системе X,Y; OA—перьый участок; AB — второй участок; I,Z — круговые кривые для первого и второго участков; O_1,O_2 — центры кривых; OA a и aAB — вспомогательные треугольники; b — схема преобразований координат.

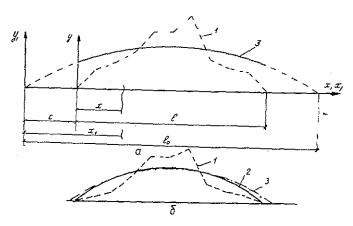

Так как по условию оба участка должны быть аппроксимированы одной кривой $(\rho_1=\rho_2)$, то, приравнивая правые части уравнений (8) и (9), получим выражение для определения β_1 и β_2 . Зная эти углы, по одному из уравнений (8) или (9) можно найти средний радиус общей для обоих участков кривой.

На рис. З показаны расчетные кривые для двух участков одинаковой длины ($l_1=l_2$) и общая кривая. В этом примере радиусы исходных кривых равнялись 654 и 562 м, радиус общей кривой составил 624 м.

Аналогичным образом можно, очевидно, последовательно автроксимировать одной кривой несколько участков. По мере увеличения их числа погрешность аппроксимации, связанная с необходимостью фиксировать положение крайних точек, лежащих на фактической оси пути, будет уменьшаться.

Рис. 3.

фактическая ось пути;
 3 — аппроксимирующие кривые для первого и второго участков;
 общая кривая для двух участков.


Второй способ. Расчетная схема приведена на рис. 4, α . Ось пути также аппроксимируется уравнением (1), но ограничение в положения крайних точек не вводится. Длина расчетной хорды l_0 не будет поэтому совпадать с длиной участка l, и ее надо определить. Рассматривая, помимо радиуса, еще две неизвестные величины l_0 и c и применяя метод наименьших квадратов, получим систему уравнений

$$\rho = \frac{l_0 \Sigma (x_i + c)^2 - \Sigma (x_i + c)^3}{2 \Sigma y_i (x_i + c)};$$
 (10)

$$\rho = \frac{l_0^2 \Sigma(x_i + c) - 3l_0 \Sigma(x_i + c)^2 + 2\Sigma(x_i + c)^3}{2 \left[l_0 \Sigma y_i - 2\Sigma y_i (x_i + c)\right]};$$
(11)

$$\rho = \frac{2l_0 \Sigma (x_i + c)^3 - l_0^2 \Sigma (x_i + c)^2 - \Sigma (x_i + c)^4}{2 [\Sigma y_i (x_i + c)^2 - l_0 \Sigma y_i (x_i + c)]}.$$
 (12)

Совместное решение этой системы позволяет определить все три неизвестные величины ρ , l_0 и c. Дальнейший ход вычислений не отличается от использованного в первом спосбе. Результаты аппроксимации для одного и того же участка по первому и второму способам показаны на рис. 4, δ . Можно отметить, что расхождения в величине неровностей наибольшие на границах участка. В средней части участка сходимость довольно хорошая.

Pric. 4.

a — расчетная схема; b — результаты аппрокенмации по первому и второму способам; b — фактическая ось пути; b — аппрокенмация по первому способу; b — по второму способу,

Второй способ аппроксимации более точен, однако он не дает воз-

можности получить одно уравнение для нескольких участков.

Таким образом, предлагаемая методика позволяет как рассчитать средний радиус закругления кривой для одного или нескольких участков, так и определить величину неровностей рельсо-шпальной решетки; при необходимости аппроксимации кривой на одном участке предпочтительнее второй способ; при необходимости получения одного уравнения для нескольких участков следует применять первый способ.

Отметим в заключение, что приведенные зависимости легко про-

граммируются на ЭВМ.

ЛИТЕРАТУРА

[1]. Морозов С. И. О факторах, способствующих выбросу пути.— ИВУЗ, «Лесной журнал», 1975, № 6. [2]. Морозов С. И., Попов М. В. Начальные неровности рельсо-шпальной решетки.— ИВУЗ, «Лесной журнал», 1974, № 5.

Поступила 8 июня 1976 г.

УДК 625.527

1

ИССЛЕДОВАНИЕ НАПРЯЖЕНИЙ ИЗГИБА В НЕСУЩИХ КАНАТАХ ПОД ДЕЙСТВИЕМ МНОГОКАТКОВОЙ КАРЕТКИ

И. И. СЛЕПКО. И. Н. БЕРЕГОВОЙ

Хмельницкий технологический институт

Получены формулы для определения напряжений изгчба под катком многокатковой грузовой каретки и коэффициента перекрытия зон изгиба. Найдено выражение для определения коэффициента несоответствия каната монолитному стержню. Проведено сравнение результатов теоретических исследований с результатами экспериментов других авторов.

Выносливость несущих канатов подвесных лесотранспортных установок определяется величиной и сочетанием напряжений, возникающих

в них в процессе изготовления и эксплуатации.

Для определения напряжений изгиба, возникающих в несущем канате от поперечной нагрузки, используется формула Исааксена [7], которая получена для бесконечного невесомого стержня, нагруженного сосредоточенной силой. Действительные напряжения изгиба, возникающие в несущих жанатах, как показали экспериментальные исследования [3, 6, 8], меньше расчетных, поэтому в формулу Исааксена был введен коэффициент а, учитывающий несоответствие каната монолитному стержню.

Для учета влияния соседних катков при многокатковой грузовой каретке проф. А. И. Дукельским [3] введен коэффициент ⁵, учитываю-

щий перекрытие зон изгиба.

В данной статье исследуются напряжения изгиба в несущих канатах как в конечных жестких нитях под действием многокатковой каретки при допущении, что начальная нагрузка (собственный вес нити) не вызывает напряжений изгиба.

Дифференциальное уравнение упругой оси несущего каната как

жесткой нити имеет вид [4]

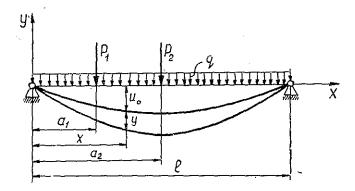


Рис. 1. Схема однопролетной нити.

$$\frac{d^4y}{dx^4} - \frac{H}{EI} \frac{d^2y}{dx^2} = \frac{H}{EI} \frac{d^2U_0}{dx^2} - \frac{q}{EI}, \qquad (1)$$

где y и U_0 — упругое и первоначальное смещение оси каната (рис. 1); H — горизонтальная составляющая натяжения каната; EI — изгибная жесткость каната;

q — вес 1 пог. м каната.

Для несущего каната с опорами на одном уровне, согласно [1],

$$U_0 = -\frac{g(l-x)x}{2H_0}, (2)$$

где H_0 — горизонтальная составляющая монтажного натяжения каната; l — длина пролета;

x — расстояние от левой опоры до сечения (рис. 1). Учитывая выражение (2) и вводя обозначение $k^2 = \frac{H}{EI}$, нение (1) можно записать в виде

$$y^{1V} - k^2 y'' = k^2 \frac{q}{H} \left(\frac{H}{H_0} - 1 \right). \tag{3}$$

Общее решение уравнения (3)

$$y = C_1 + C_2 x + C_3 \cosh kx + C_4 \sinh kx + y^*,$$
 (4)

где y^* — частное решение неоднородного уравнения.

Из основных зависимостей изгиба получим

$$\Theta = y' = C_2 + k (C_3 \sinh kx + C_4 \cosh kx) + y^{*'};$$

$$\frac{M}{EI} = y'' = k^2 (C_3 \cosh kx + C_4 \sinh kx) + y^{*''};$$

$$\frac{Q}{EI} = y''' = k^3 (C_3 \sinh kx + C_4 \cosh kx) + y^{*'''},$$
(5)

где Θ — угол поворота сечения;

М и Q — изгибающий момент и поперечная сила в сечении. .

Для нахождения постоянных интегрирования и частного решения использован метод начальных параметров.

В частном случае, при шарнирном закреплении концов каната и H = const, т. е. для несущего каната с натяжным грузом, уравнения деформаций и внутренних силовых факторов имеют вид

$$EIy = \frac{\sum_{i=1}^{n} P_{i}}{k^{3}} \left\{ \frac{\sinh k (l - u_{i})}{\sinh k l} \sinh k x - \left(1 - \frac{a_{i}}{l}\right) k x - - f(a_{i}) \left[\sinh k (x - a_{i}) - k (x - a_{i}) \right] \right\};$$
 (6)

$$EI\Theta = \frac{\sum_{l=1}^{\infty} P_l}{k^2} \left\{ \frac{\sinh k (l-a_l)}{\sinh k l} \cosh k x - \left(1 - \frac{a_l}{l}\right) - f(a_l) \left[\cosh k (x-a_l) - 1 \right] \right\}; \tag{7}$$

$$M = \frac{1}{k} \sum_{i=1}^{n} P_{i} \left[\frac{\sinh k (l - a_{i})}{\sinh k l} \sinh k x - f(a_{i}) \sinh k (x - a_{i}) \right];$$
 (8)

$$Q = \sum_{i=1}^{n} P_i \left[\frac{\operatorname{sh} k (t - a_i)}{\operatorname{sh} k t} \operatorname{ch} k x - f(a_i) \operatorname{ch} k (x - a_i) \right], \tag{9}$$

где P_i — вес i-того сосредоточенного груза; a_i — расстояние от левой опоры до точки приложения i-того гру-

$$f(a_i) = 0$$
 при $x < a_i$ и $f(a_i) = 1$ при $x > a_i$.

На подвесных лесотранспортных установках с маятниковым движением каретки применяются двух-, четырех- и восьмикатковые карет-

Давление на каток каретки

$$V_{max} = \frac{G}{n_{\nu}} k_{\nu}, \tag{10}$$

где G — вес пачки бревен с кареткой;

 n_1 — число катков каретки;

 $k_{\scriptscriptstyle V}$ — коэффициент, учитывающий неравномерность распределения веса груза между катками и динамику движения груза.

Предполагая, что вес груза распределяется равномерно катками каретки, выражение (8) для определения величины изгибающего момента в произвольном сечении можно записать в виде

$$M = \frac{V}{k} \sum_{i=1}^{n} \left[\frac{\sinh k (l - a_i)}{\sinh k l} \sinh k x - f(a_i) \sin k (x - a_i) \right]. \tag{11}$$

При однокатковой каретке изгибающий момент в сечении, приложен груз V,

$$M_1 = \frac{V}{k} \frac{\sinh k \left(l - a_1\right)}{\sinh k l} \sinh k a. \tag{11a}$$

Максимальные напряжения изгиба в заданном сечении

$$\sigma_{u3} = \frac{M y_{max}}{I}, \tag{12}$$

где y_{max} — расстояние от оси каната к крайней точке его сечения;

$$y_{max} = \frac{d}{2}$$
 (d— диаметр каната);

— осевой момент инерции площади сечения каната.

На основании выражений (11а) и (12) получим формулу для определения напряжений изгиба в несущем канате под катком грузовой каретки

$$\sigma_{\text{H3}} = \frac{V}{F} \frac{d}{2i_{\text{K}}} \sqrt{\frac{E}{\sigma_{\text{p}}}} \frac{\sinh k(l-a)}{\sinh kl} \sinh ka, \tag{13}$$

где i_{κ} — осевой радиус инерции сечения каната; F — суммарная площадь нормального сечения всех проволок каната по ГОСТу;

 $\sigma_{
m p}$ — напряжения растяжения; E — условный модуль упругости каната как агрегата.

Максимальные напряжения изгиба в несущем канате от сосредоточенного груза, имеющие место при $a = \frac{l}{2}$

$$\sigma_{\text{tt3. }max} = \frac{V}{F} \frac{d}{4l_{\text{K}}} \sqrt{\frac{E}{\sigma_{\text{p}}}} \operatorname{th} k \frac{l}{2}.$$
 (14)

Из выражения (14) следует, что напряжения изгиба зависят от мо-

дуля упругости каната.

Исследования [2, 4] показали, что продольная и изгибная жесткость каната зависит от степени его натяжения. Согласно [2], изгибная жесткость каната B увеличивается прямо пропорционально напряжениям растяжения, т. е.

$$B = B_0 + \mathbf{k}' \circ_{\mathbf{p}}, \tag{15}$$

 B_0 — условная изгибная жесткость натянутого каната, зависящая от конструкции и типа каната;

k' — коэффициент пропорциональности.

Используя вывод проф. А. И. Дукельского [3] о том, что напряжения изгиба одинаковы при работе каната как стержня и как пучка проволок, можно предположить, что модуль упругости каната как агрегата при изгибе изменяется по линейному закону (15) аналогично модулю продольной упругости каната

$$E'_{K} = E'_{H} + k_{H3} \sigma_{D}, \tag{16}$$

 $E_{\rm K}'$ — модуль упругости каната как агрегата при изгибе; $E_{\rm H}'$ — модуль упругости не натянутого каната при изгибе; $k_{\rm H3}$ — коэффициент пропорциональности.

Исходя из этого, в формулу (14) вместо величины E необходимо подставлять значение модуля упругости каната, соответствующее заданному его натяжению. Тогда получим

$$\sigma_{\text{II3. }max} = \frac{V}{F} \sqrt{\frac{E_{max}}{\sigma_{\text{p}}}} \frac{d}{4i_{\text{K}}} \sqrt{\frac{E'_{\text{K}}}{E_{max}}} \operatorname{th} k \frac{l}{2}. \tag{17}$$

Сравнивая выражение (17) с формулой проф. А. И. Дукельского [3] для изгибных напряжений, получим коэффициент несоответствия каната монолитному стержню

$$\alpha = \frac{d}{4i_{\rm K}} \sqrt{\frac{E_{\rm K}'}{E_{max}}} \,. \tag{18}$$

 $^{^*}$ При $l=\infty$ выражение (14) принимает вид формулы Исааксена [7] для монолитисто стержия.

Из формулы (18) следует, что коэффициент несоотретствия каната монолитному стержню зависит от модуля упругости каната как агрегата на изгиб, т. е. от степени натяжения каната, что подтверждается экспериментальными исследованиями [3, 6]. Поскольку изгибная жесткость каната типа ЛК выше, чем каната типа ТК, то соответственно коэффициенты α и напряжения изгиба при одних и тех же исходных данных больше для канатов типа ЛК, чем для канатов типа ТК, что также подтверждается экспериментальными исследованиями [6].

Используя выражения (16) и (13), получим формулу для определения напряжений изгиба под катком грузовой каретки

$$\sigma_{\text{H3}} = k_{\sigma} \frac{V}{F} \frac{d}{2l_{\kappa}} \frac{\sinh k(l-a)}{\sinh kl} \sinh ka, \tag{19}$$

где

$$k_{\scriptscriptstyle \mathrm{G}} = \sqrt{rac{E_{\scriptscriptstyle \mathrm{K}}^{'}}{\sigma_{\scriptscriptstyle \mathrm{D}}}} = \sqrt{k_{\scriptscriptstyle \mathrm{H3}} + rac{E_{\scriptscriptstyle \mathrm{H}}^{'}}{\sigma_{\scriptscriptstyle \mathrm{D}}}} \,.$$

На рис. 2 приведены графики зависимости напряжений изгиба для несущего каната 25-H-170-B ГОСТ 3077-55, полученные экспериментально [6] и по формуле (19) с использованием результатов экспериментальных исследований [5]. Сравнение теоретических и экспериментальных данных показывает хорошее их совпадение в зоне напряжений 40—100 кгс/мм², в которой работают несущие канаты подвесных лесотранспортных установок.

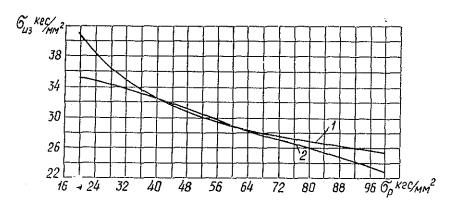


Рис. 2. График зависимости $\sigma_{\rm H3} = f$ ($\sigma_{\rm p}$) для каната 25-H-170-B ГОСТ 3077—55.

1 — по формуле (19); 2 — по экспериментальным исследованиям [6].

На основании выражений (11) и (11а) получим формулу для определения коэффициента перекрытия зон изгиба в общем виде. В частном случае, при положении i-того катка n_1 -катковой каретки посередине пролета, эта формула имеет вид

$$\xi = \sum_{i=1}^{n_1} \cosh k (j-i) c \left[1 - \coth k \frac{l}{2} \sinh |(j-i)| c \right], \tag{20}$$

где c — расстояние между осями катков.

Нами подсчитаны коэффициенты ξ для катков четырехкатковой грузовой каретки при следующих исходных данных: установка однопро-

летная с опорами на одном уровне и длиной пролета l=500 м, несущий канат 25-H-160B ГОСТ 3070—66, каретка четырехкатковая с базой c=250 мм, натяжение каната H=T=17 тс.

В результате подсчета получено, что для 1-го и 4-го катков $\xi = 1,07$, а для 2-го и 3-го $\xi = 1,14$, что хорошо согласуется с данными проф. А. И. Дукельского [3].

При многокатковой грузовой каретке формула (19) для определе-

ния напряжений в несущем канате под катком примет вид

$$\sigma_{\text{H3}} = \xi k_{\sigma} \frac{V}{F} \frac{d}{2i_{\text{K}}} \frac{\sinh k (l-a)}{\sinh k l} \sinh ka. \tag{21}$$

С некоторым приближением формулу (21) можно записать

$$\sigma_{\text{ii3. }max} = \xi \, k_{\sigma} \, \frac{V}{F} \,. \tag{22}$$

Проведенные исследования позволяют определить изгибные напряжения, возникающие в несущих канатах подвесных установок при многокатковой грузовой каретке с учетом упругих несовершенств каната.

ЛИТЕРАТУРА

[1]. Белая Н. М., Прохоренко А. Г. Қанатные лесотранспортные установки. М., «Лесная промышленность», 1964. [2]. Глушко М. Ф. Стальные подъемные канаты. Киев, «Техніка», 1966. [3]. Дукельский А. И. Подвесные канатные дороги и кабельные краны. М., Машгиз, 1966. [4]. Качурин В. К. Теория висячих систем. Л.—М., Госстройнздат, 1962. [5]. Ковальский В. С., Жиряков А. И. Модуль упругости каната двойной свивки. — В сб.: Расчеты деталей машин и элементов сооружений, вып. 2. ХВКИУ, 1969. [6]. Прохоренко А. Г. Напряжения изгиба в несущих канатах открытого типа. — В сб.: Стальные канаты, вып. 4. Киев, «Техніка», 1967. [7]. Is a a chsen I. Die Beanspruchung von Drahtseilen.—Z.—ft. VDJ, 1907, № 17. [8]. Wyss Th. Die Stahldrahtseile der Transport- und Förderanlagen insbesondere die Standseil- und Schwebebahnen. Zürich, 1957.

Поступила 8 декабря 1975 г.

УДК 621.43

ТОПЛИВНАЯ ЭКОНОМИЧНОСТЬ ТЕПЛОВОЗОВ ТУ7 ПРИ ПОЕЗДНОЙ РАБОТЕ

А. В. ДУРОВ

Архангельский лесотехнический институт

Приводятся результаты аналитического и экспериментального исследования, на основе которых составлен теплотехнический паспорт и разработана инструкция по применению технических норм расхода топлива тепловозами ТУ7.

В целях оценки эксплуатационной топливной экономичности тепловозов ТУ7 с нагрузкой от оси на рельс 6 тс (дизель 1Д12-400, гидропередача УГП400-650) мы вычислили расходы топлива при скоростях $v=10\div40$ км/ч и нагрузках $Q=25\div400$ тс (брутто) для составов, сформированных из вагонов-сцепов ЦНИИМЭ — AB3 как с буксовыми подшипниками скольжения, так и качения.

Расчет выполнен согласно разработанной нами методике, основные

положения которой изложены в работе [4].

Основные удельные сопротивления движению тепловоза w_0' , груженых вагонов-сцепов ЦНИИМЭ — АВЗ w_0'' и поезда w_0' рассчитывали по формулам [2]

$$w_0' = 5.4 - 0.078\,v + 0.0063\,v^2 \text{ кгс/тс;}$$

$$w_0'' = 2.45 + 0.09v + 0.0025v^2 \text{ (подшипники скольжения);}$$

$$w_0'' = 1.12 + 0.14v + 0.0007v^2 \text{ (подшипники качения);}$$

$$w_0 = \frac{Pw_0' + Qw_0''}{P + Q}.$$

Момент на турбинном колесе

$$M_{\rm T} = \frac{F_{\rm K}D_{\rm K}}{2i\eta_{\rm H}} = \frac{(P+Q)\,w_{\rm 0}D_{\rm K}}{2i_{\rm 0,p}\,i_{\rm p}\,\eta_{\rm 0,p}\,\eta_{\rm K}\eta_{\rm p}}$$
 KFC·M,

 F_{κ} — касательная сила тяги, кгс;

 D_{κ} — диаметр колес, м;

 $i,\;\eta_{\scriptscriptstyle \Pi}$ — общее передаточное число и механический КПД передачи от выходного вала турбины до колес;

 $i_{
m o,p},\ i_{
m p}$ — передаточные числа осевого редуктора и реверс-редуктора; $\eta_{
m o,p},~\eta_{
m ir},~\eta_{
m p}$ — КПД осевого редуктора, карданной передачи и реверс-редуктора.

Число оборотов на выходном валу турбины

$$n_{\text{\tiny T}} = \frac{vi}{0.188D_{\text{\tiny K}}}$$
 об/мин.

По тяговой характеристике тепловоза $F_\kappa = f(v,K)$ устанавливаем, на каком гидротрансформаторе (ГТР) при заданных Q и v работает гидропередача, а также — позицию контроллера К.

По безразмерным характеристикам пускового (ТП-0,45) и маршево-(ТМ-0,95) ГТР вычисляем коэффициенты пропорциональности

$$\lambda_{\text{\tiny T,M}} = \frac{\lambda_{\text{\tiny H,M}} \gamma K_{\text{\tiny H}}}{(i'_{\text{\tiny H}})^2}; \qquad \lambda_{\text{\tiny T,M}} = \frac{\lambda_{\text{\tiny H,M}} \gamma K_{\text{\tiny M}}}{(i'_{\text{\tiny H}})^2},$$

где $\lambda_{_{\rm H.N}}$, $\lambda_{_{\rm H.M}}$ — коэффициенты входного момента; γ — плотность рабочей жидкости, кг/м³; $i'_{_{\rm II}}$ — передаточные отношения;

 $K_{\rm n}, K_{\rm m}^{-}$ — коэффициенты трансформации.

Данные подсчетов в виде графиков функции $\lambda_{_{ exttt{T},\Pi}}=f_1$ $(i_{_{\Pi}}')$ и $\lambda_{_{ exttt{T},M}}=$ $=f_{2}$ (i_{M}^{\prime}) дополнительно наносим на безразмерные характеристики. Параметры T_n и T_m , численно равные коэффициентам $\lambda_{r,n}$ и $\lambda_{r,m}$,

$$T_{\Pi} = \frac{M_{\text{T}}}{\left(\frac{n_{\text{T}}}{100}\right)^2 \frac{D_{\text{a.n}}^5}{10^3}} = \lambda_{\text{T.n}};$$

$$T_{\text{M}} = \frac{M_{\text{T}}}{\left(\frac{n_{\text{T}}}{100}\right)^2 \frac{D_{\text{a.m}}^5}{10^3}} = \lambda_{\text{T.M}},$$

где $D_{\rm a,n}, \, D_{\rm a,m}$ — активные диаметры ГТР, м.

По безразмерным характеристикам обоих ГТР определяем передаточное отношение i', КПД ГТР η_r , а затем вычисляем коэффициент трансформации $K_{n,m}$ момент на насосном колесе M_n и число его оборо-TOB $n_{\scriptscriptstyle \rm H}$

$$K_{\text{\tiny II.M}} = -\frac{\eta_{\text{\tiny T}}}{i'}$$
; $M_{\text{\tiny H}} = \frac{M_{\text{\tiny T}}}{K}$; $n_{\text{\tiny H}} = \frac{n_{\text{\tiny T}}}{i'}$.

Число оборотов дизеля n и овободная мощность на его валу $N_{e}^{'}$

$$n = n_{\rm H} i_{\rm c};$$
 $N'_e = \frac{M_{\rm H} n}{716, 2i_{\rm c} \gamma_{\rm c}}$ $\pi.c.,$

где i_{c} , η_{c} — передаточное число и КПД согласующей передачи.

Мощность, расходуемая на привод вопомогательного оборудования (компрессор, вентилятор, питательный насос гидропередачи), которую учитывает коэффициент в,

$$N_{\rm B} = \frac{\beta N_e}{1-\beta}$$
 л. с.

Эффективная мощность $N_{\,c}$ и среднее эффективное давление $P_{\,c}$

$$N_e = N_e' + N_{\rm B}; \ P_e = \frac{900N_e}{V_s n} \ {\rm krc/cm^2},$$

где V_s — литраж дизеля, л.

Цикловая подача топлива [3]

$$G_{\rm u} = 7.42 + 3.01 P_e + 0.33 P_e^2 \text{ мг/(цикл·л)}.$$

Часовой G_{τ} и удельный g_{c} расходы топлива

$$G_{\tau} = \frac{30nV_{S}G_{\Pi}}{10^{6}}$$
кгіч; $g_{e} = \frac{10^{3}G_{\tau}}{N_{e}}$ гі(э.л.с.ч).

Эффективный КПД дизеля au_e и общий КПД тепловоза au

$$\eta_e = \frac{632 \cdot 10^3}{h_u g_e}; \ \eta = \eta_e \eta_r \eta_M,$$

где h_u — теплотворность топлива, ккал/кг; ηм — механический КПД передачи,

$$\eta_{\rm M} = \eta_{\rm R} \, \eta_{\rm C}$$
.

На основании расчетов были построены графики функции $G_{ au} =$ = f (Q, v) для вагонов-сцепов с подшипниками скольжения и качения. Анализ графиков показал, что расход $G_{ au}$ при $Q \gg 50$ тс для всех скоростей изменяется по закону прямой линии, угол подъема которой к оси абсцисс при Q= const. возрастает с увеличением v. Значения n_0 , вычисленные с использованием графика $G_{\tau}=f\left(Q,\,v\right)$

и уравнения

$$n_0 = \frac{10 \cdot G_{\mathrm{T}}}{Qv} \, \mathrm{Kr}_{\mathrm{r}} (10^4 \, \mathrm{TC} \cdot \mathrm{KM}),$$

приведены в табл. 1 (верхние цифры — для сцелов с подшилниками скольжения, нижние — качения). По данным таблицы построен график $n_0 = f(Q, v)$, являющийся теплотехническим паспортом тепловоза ТУ7 и основой для технического нормирования топлива (рис. 1).

Как видно из графика, при увеличении Q ($v={
m const}$) величина n_0 снижается вначале быстро, а затем медленнее. Для анализа характера изменения кривых $n_0 = f(Q, v)$ воспользуемся уравнением

$$n_0 = 2.34 \; \frac{P+Q}{Q} \; \frac{w_0}{\eta_e \, \eta_r \, \eta_{\rm m}} \; . \label{eq:n0}$$

При небольших нагрузках Q расход n_0 возрастает в связи с увелинем отношения $\frac{P+Q}{Q}$ и уменьшением общего КПД η . Последчением отношения ний, как показали расчеты, уменьшается преимущественно за счет сни-

Таблица 1

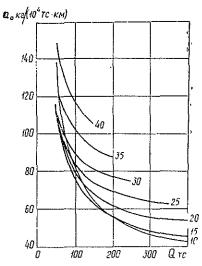
_	Значение $n_{ m O}$ кг/(104 тс - км) при весе поезда Q брутто (только вагонов), т $_{ m C}$								
Скорость,	50	109	150	200	250	300	350	400	
10	140 132	81 71	64 5 5	55 46	50 41	47 38	44 35	43 33	
15	117 113	$\frac{77}{70}$	62 56	56 48	$\frac{52}{44}$	$\frac{48}{42}$	$\frac{47}{40}$	45 38	
20	113 103	79 66	68 56	62 51	59 48	$\frac{56}{46}$	55 45	54 43	
25	113 100	83 70	73 62	69 58	66 56	64 55	$\frac{63}{54}$	<u></u> 53	
30	117 110	90 77	82 68	77 64	$\frac{75}{62}$	<u>–</u>	_		
35	$\frac{129}{120}$	100 86	92 76	$\frac{88}{71}$	<u></u> 68		*****	_	

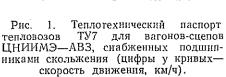
жения КПД дизеля η_e при оравнительно мало изменяющемся η_r ($\eta_r = 0.76 \div 0.88$). С ростом Q отношение $\frac{P+Q}{Q}$ уменьшается, возрастает η_{e^*} в результате снижается n_0 .

Скорость v оказывает более сложное влияние на расход n_0 . При небольших Q кривые $n_0=f(v)$ обращены выпуклостью вниз, причем с увеличением Q минимальные значения n_0 смещаются κ оси ординат. В этом случае в отношении расхода n_0 особенно невыгодны v<15 км/ч. Тепловоз наиболее экономично работает при Q>150 тс и $v=15\div 25$ км/ч. При дальнейшем повышении v, хотя расход топлива n_0 и возрастает (w_0 растет быстрее, чем η), но это компенсируется повышением часовой производительности тепловоза Q v.

Применение на вагонах-сцепах подшилников качения, в связи с уменьшением w_0 , позволяет снизить расход топлива. Это снижение определяется значениями Q и v. Так, при движении тепловоза с составом Q=200 тс со скоростью v=20 км/ч и использовании сцепов с подшипниками качения экономия топлива составляет около 18%.

Анализ отчетных данных показал, что в некоторых предприятиях средний вес груженого состава не превышает 100 тс, порожнего — 30—40 тс (4—5 сцепов), скорость v=13-16 км/ч, а используемая грузоподъемность сцепов значительно ниже допускаемой. При таких низких скоростях, и особенно весах состава, коэффициент загрузки дизеля резко снижается, он работает неэкономично, а тяговые и скоростные качества мощных тепловозов ТУ7 используются не полностью. На многих лесовозных УЖД повышение скоростей ограничивается плохим состоянием и недостаточной прочностью пути.


Результаты аналитического расчета расхода топлива мы сопоста вили с данными ВНИТИ, полученными при нагружении дизеля 1Д12-400 гидропередачей на стоповом режиме. Как видно из рис. 2, при всех окоростных и нагрузочных режимах дизеля сходимость данных можно считать вполне удовлетворительной. Эти данные в основном совпали также с экспериментами* в Шалакушском леспромхозе Архангельской


^{*} В экспериментах и обработке материала принимали участие О. Д. Орленко и Б. Қ. Микитюк.

Поправки к статье А. В. Дурова «Расчет расхода топлива поездными узкоколейными тепловозами с ГМП* на установившихся режимах». «Лесной журнал», 1976, № 4.

Стра- ница	Строка	Напечатано	Должно быть			
52	Абзац 3, строки 2—3	Тепловоза прицепнсго состава	Тепловоза и прицепного состава			
v .	Формула (1)	$n_0 = 10^4 \frac{G_{\tau}}{Qv} = 2.34 \frac{w_0}{\eta} \cdot \frac{P+Q}{Q} \cdot 10^4 \text{ Kr/ (TC·KM)}$	$n_0 = 10^4 \frac{G_{\tau}}{Qv} = 2.34 \frac{w_0}{\eta} \cdot \frac{P+Q}{Q} \text{kg/}(10^4 \text{Tc} \cdot \text{km})$			
53	" (3)	$n_{\rm T} = \frac{vl}{0.188D_{\rm R}} = \frac{l_{\rm 0.p} l_{\rm D}}{0.188D_{\rm K}}$	$n_{\rm r} = rac{vt}{0.158D_{ m K}} = rac{t_{ m 0.0}t_{ m p}}{0.188D_{ m K}}v$			
· 39	" (6)	$M_{\scriptscriptstyle \mathrm{H}} = \lambda_{\scriptscriptstyle \mathrm{H}} n_{\scriptscriptstyle \mathrm{H}}^2 D_{\scriptscriptstyle \mathrm{a}}^5$	$M_{\rm H} = \lambda_{\rm H} \gamma n_{\rm H}^2 D_{\rm a}^5$			
54	Формула без номера	$M_{\rm T} = \frac{\lambda_{\rm H} \gamma k}{(t')^2} \left(\frac{n_{\rm T}}{100}\right)^2 \frac{D_{\rm a}^5}{10^3} = \lambda_{\rm T}'' \left(\frac{n_{\rm T}}{190}\right)^2 \frac{D_{\rm a}^5}{10^3}$	$M_{\mathbf{T}} = \frac{\lambda_{\mathrm{H}}' \gamma k}{(l')^2} \left(\frac{n_{\mathrm{T}}}{100}\right)^2 \frac{D_{\mathrm{a}}^5}{10^3} = \lambda'' \left(\frac{n_{\mathrm{T}}}{100}\right)^2 \frac{D_{\mathrm{a}}^5}{10^3}$			
• ·	Формула (12)	$T' = \left(\frac{n_{\rm T}}{100}\right)^2 \frac{D_{\rm a}^5}{10^3}$	$T' = \frac{M_{\rm T}}{\left(\frac{n_{\rm T}}{100}\right)^2 \frac{D_{\rm a}^5}{10^3}}$			
			1007			
78	Строка 10 снизу " 8 "	Зная $M_{ extbf{T}}$ и $n_{ extbf{t}}$ По известным $M_{ extbf{T}}$ и $n_{ extbf{H}}$	Зная $M_{\scriptscriptstyle m T}$ и $n_{\scriptscriptstyle m T}$ По известным $M_{\scriptscriptstyle m H}$ и $n_{\scriptscriptstyle m H}$			
. 55	# Формула (I4)	$M_e = \frac{M_e'}{1-\beta} = \frac{M_H}{i_c \gamma_{\rm ic} \sqrt{1-\beta}}$	$M_e = \frac{M_e'}{1-\beta} = \frac{M_u}{\iota_c \eta_c (1-\beta)}$			
	" (15)	$G_{\mathrm{u}}=rac{10^{\mathrm{o}}G_{\mathrm{c}}}{3\upsilon_{H}V_{s}}\mathrm{M}\Gamma/\langle\mathrm{цик}\mathrm{\jmath}\cdot\mathrm{\jmath}\rangle$	$G_{\rm u}=rac{10^3 \varUpsilon_{ m r}}{30nV_S}{ m Mr}/({ m цик} \Lambda\cdot \Lambda)$			
56	" (18)	$n_0 = 1,59 \; \frac{V_S l_6}{D_0 G} \; G_{\rm n}$	$n_0 = 1.59 \frac{V_s t_0}{D_r O} G_n$			
39	Строка 6 снизу	$N_e = 40 \text{ n.c.}$	$N_e = 400 \text{ n. c.}$			

«Лесной журнал» № 1

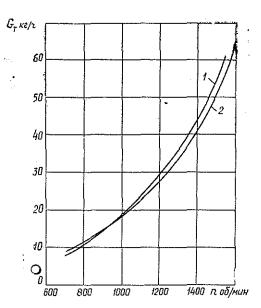


Рис. 2. Часовой расход топлива дизелем 1Д12-400 под нагрузкой при работе с включенными компрессором и вентилятором в зависимости от оборотов коленчатого вала.

данные аналитического расчета; 2 — данные экспериментов ВНИТИ.

области, проведенными на специально подобранных, предварительно пронивелированных прямых участках пути при $v=10\div30$ км/ч и $Q=42\div211$ тс со сцепами на подшипниках качения.

При использовании графика $n_0 = f(Q, v)$ для нормирования топлива величины n_0 корректируют путем введения ряда поправок, учитывающих трудность реального профиля пути (по сравнению с площадкой), температурные условия, холостую работу дизеля и др. Методика определения этих дополнительных затрат топлива, отнесенных к 10^4 тс \cdot км, изложена нами ранее [1].

Результаты аналитического расчета, подтвержденные экспериментами, мы использовали для разработки технических норм расхода топлива тепловозами ТУ7. Нормы прошли проверку на предприятиях ряда объединений и трестов, а инструкция по их применению утверждена техническим управлением Минлеспрома [5].

ЛИТЕРАТУРА

[1]. Дуров А. В. Об эксплуатационной топливной экономичности лесовозных узкоколейных тепловозов при поездной работе. — ИВУЗ, «Лесной журнал», 1970, № 4. [2]. Дуров А. В. Об основном сопротивлении движению подвижного состава УЖД. — ИВУЗ, «Лесной журнал», 1975, № 1. [3]. Дуров А. В. О цикловой подаче топлива дизелями некоторых лесотранспортных машин. — ИВУЗ, «Лесной журнал», 1976, № 1. [4]. Дуров А. В. Расчет расхода топлива поездными узкоколейными тепловозами с ГМП на установившихся режимах. — ИВУЗ, «Лесной журнал», 1976, № 4. [5]. Дуров А. В., Смирнов Н. Н., Орленко О. Д., Микитюк Б. К. Инструкция по применению временных технических норм расхода топливо-смазочных материалов для лесовозных узкоколейных тепловозов ТУ7. Министерство лесной и деревообрабатывающей промышленности СССР, АЛТИ—СевНИИП. Архангельск, 1976.

1977

МЕХАНИЧЕСКАЯ ОБРАБОТКА ДРЕВЕСИНЫ И ДРЕВЕСИНОВЕДЕНИЕ

УДК 628.517.2:674

К ВОПРОСУ ВИБРОДЕМПФИРОВАНИЯ ТОНКОСТЕННЫХ КОНСТРУКЦИИ В УСЛОВИЯХ ДЕРЕВООБРАБОТКИ

А. С. ЧУРИЛИН, Ю. А. МАТЫЦИН, Н. Н. БОРИСОВА

Ленинградская лесотехническая академия

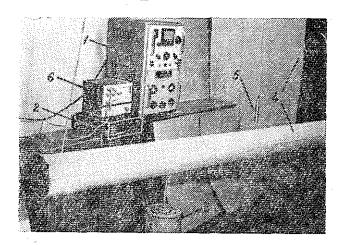
Проведено исследование вибродемифирующих свойств облицовки тонкостенных металлических конструкций на базе кальцитных строительных материалов и установлена эффективность такой облицовки.

При шумоглушении воздуховодов вентиляторных систем, виброактивных узлов деревообрабатывающего оборудования (наружных кожухов станин, систем пневмоотсоса опилок, лотков, окорочных барабанов и др.) необходимо привлекать средства вибропоглощения (вибродемпфирования).

Вибродемпфирование осуществляется путем нанесения на поверхность машины или конструкции вибропоглощающего материала с большим коэффициентом потерь на внутреннее трение ", представляющим собой отношение рассеиваемой энергии за цикл вынужденных колсбаний к наибольшему значению энергии за этот же цикл.

Задача расчета эффекта шумоглушения при вибродемпфировании затруднена из-за многообразия случаев возбуждения колебаний. Упоминаемая в литературе [1, 2, 3] формула $\Delta L = 20 \, \mathrm{lg} \, \frac{\gamma_{\mathrm{IR}} + \gamma_{\mathrm{IR}3 + \mathrm{n}}}{\gamma_{\mathrm{IR}3}}$, связывающая изменение показателей затухания с изменением уровня амилитуды резонансных колебаний, практически непригодна для расчета эффекта шумоглушения при вибродемпфировании, так как влияние параметров вибропоглощающего материала на эффект снижения шума различно в зависимости от условий возбуждения [4].

Учитывая сложность и недостаточную точность существующих методов расчета, при проведении экспериментальной работы необходимо учитывать условия реального использования демпфируемой конструкции, способы ее возбуждения (в точке, по кромке или вдоль прямой линии), особенности контакта с другими элементами, форму конструкции и т. д.


В ряде случаев проще смоделировать конкретную производственную ситуацию, чем вести сложные расчеты.

На кафедре охраны труда Ленинградской лесотехнической академии была проведена экспериментальная работа по исследованию вибропоглощающих покрытий, выполненных на базе кальцитных растворов.

Экспериментальное определение шумовых характеристик проводили с помощью установки, представленной на рис 1. Тракт возмущения состоял из звукового генератора ГЗ-18, усилителя низкой частоты Т-002 и собственно возбудителя — электродинамического вибратора типа ESE-211. Измерительный тракт включал прецизионный шумомер типа PSI-202 и октавные фильтры типа ОF-101. Усиленный синусоидальный сигнал определенной частоты подводился к вибратору. Специально изготовленным стальным стержнем обеспечивалось практически точечное возбуждение испытуемых образцов. Объектами измерения были пластина из кровельного железа толщиной 0,8 мм, размером 1000 × 500 мм и трубы из того же материала диаметром 200 мм и

Рис. 1. Экспериментальная установка для определения шумовых характеристик демпфирующих объектов.

1 — звуковой генератор ГЗ-18; 2 — усилитель низкой частоты Т-002; 3 — электродинамический вибратор ЕУЕ-211; 4 —демифируемые объекты; 5 — микрофой; 6 —прецизионный шумомер PSI-202 с октавным фильтром OF-101.

длиной 2000 мм каждая. При исследования шумовых характеристик пластин меняли условия возбуждения: пластину возбуждали в двух точках — в центре и за край; полвешивали вертикально (за две точки) и горизонтально (за четыре точки).

подвешивали вертикально (за две точки) и горизонтально (за четыре точки).

Трубы возбуждали за край. В целях моделирования различных акустических процессов специальными заглушками поочередно закрывали торцы труб. Измерение уровней шума проводили в ближнем поле. Микрофон устанавливали на расстоянии 50 мм

от излучаемой поверхности образца.

Исследовали комбинированные виброноглощающие покрытия: кальцитные растворы с армирующей основой из ткани. В процессе эксперимента варьировали толщину покрытия. Испытуемые образцы возбуждали на частотах 63; 125; 250 и 500 Гц. Измерение уровней звукового давления осуществляли в нормируемом диапазоне частот — 63 ÷ 8000 Гц.

Экспериментальные данные представлены на рис. 2 и 3. Из приведенных графиков (рис. 2) видно, что условия возбуждения существенно влияют на шумоглушение при вибродемпфировании пластины. Максимальный эффект наблюдается на частоте возмущающей силы $f_{\rm B}=63$ Γ ц при вертикальной подвеске пластины и возбуждении ее за край (рис. 1, a). В этом случае величина снижения шума $^{\Delta}L$ составляет 20-25 дБ в диапазоне средних частот и 20-35 дБ на высоких частотах.

При возбуждении за середину эффект ухудшается в среднем на 5 дБ по спектру. Шумоглушение менее эффективно при горизонтальной подвеске (рис. 2, δ), особенно на низких частотах. При увеличении $f_{\rm B}$ (рис. 2, δ) эффект более ярко выражен в низкочастотном дианазоне спектра (15—25 дБ, если пластина возбуждается в центре), причем в зависимости от точки приложения возмущающей силы (центр, край) шумоглушение значительно ухудшается в области средних (высоких) частот. Широкополосное вибродемпфирование наблюдается в случае горизонтальной подвески пластины и возбуждении ее за край при $f_{\rm B}=250$ Гц (рис. 2, ϵ). Величина ΔL составляет 10—20 дБ на низких, 15—25 дБ на средних и высоких частотах.

Как видно из графиков (рис. 2, a, δ , s, s), при вибродемпфировании происходит трансформация спектра, причем в областях частотного диапазона, близких к частоте возмущающей силы, наблюдаются резонансные пики, обусловленные корреляцией собственных и вынужденных колебаний пластины. Возникновение резонансов в высокочастотной области спектра объясняется возбуждением продольных и поперечных собственных модулей пластины. На величину амплитуды резонансных пиков и их перемещение по спектру влияют также вязкоупру-

гие свойства покрытия и его толщина.

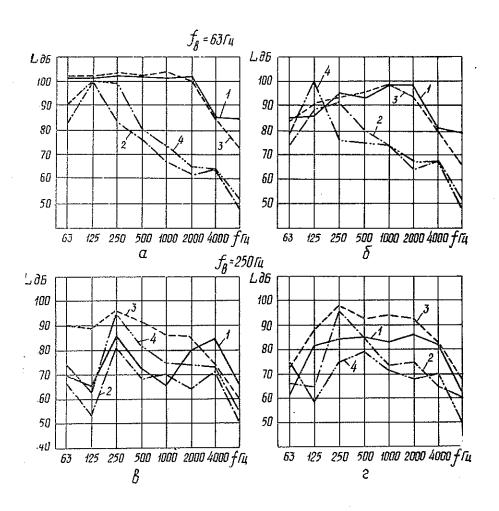


Рис. 2. Влияние условий возбуждения на эффект шумоглушения при вибродемпфировании пластин (толщина комбинированного покрытия 2 мм, материал армирующей прослойки — мешковина).

a, s — вертикальная подвеска; δ , s — горизонтальная подвеска; l — возбуждение за край, пластина без покрытия; 2 — то же, но с покрытием; 3 — возбуждение за середину, пластина без покрытия; 4 — то же, но с покрытием.

На рис. З представлены зависимости, иллюстрирующие влияние параметров комбинированного покрытия и условий возбуждения на эффективность шумоглушения при вибродемпфировании труб. Максимальный эффект наблюдается в случае, когда закрыт торец дальний от точки приложения возмущающей силы (5—10 дБ на низких частотах и 10—20 дБ в средне- и высокочастотном диапазонах спектра). При этом наблюдается широкополосное вибродемпфирование трубы (рис. 3, г). Как видно из графиков (рис. 3, а), эффект снижения шума при вибродемпфировании зависит от толщины комбинированного покрытия и физико-механических параметров вибропоглощающего материала. Трансформация спектра при демпфировании труб менее заметна и обусловлена причинами, аналогичными случаю возбуждения пластины, однако при этом следует учитывать формирование стоячих и псев-

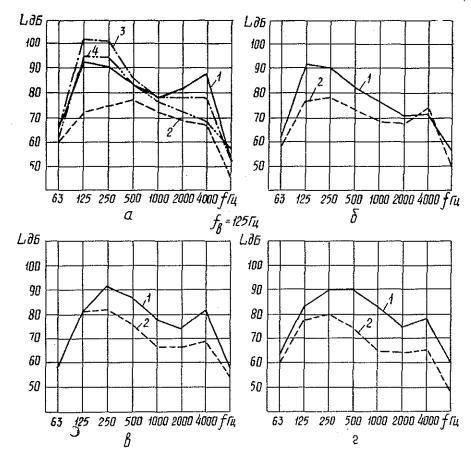


Рис. 3. Влияние параметров покрытия и условий возбуждения на эффект шумоглушения при вибродемпфировании труб.

a — торцы открыты; b — торцы закрыты; b — закрыт торец ближний от точки возбуждения; b — труба I без покрытия; b— труба I задемпфирована (толицина покрытия 2 мм, материал армирующей прослойки — мешковина); b— труба II без помрытия b— труба II без покрытия b— труба II открытия b— т

достоячих волн столба воздуха в трубе с открытыми или закрытыми торцами.

Можно предположить, что удовлетворительные характеристики комбинированного покрытия на основе кальцитных растворов с армирующим слоем из ткани, полученные экспериментально, обусловлены некоторыми особенностями кальцитных составов, а именно: способностью при отверждении создавать поверхностное напряжение демпфируемого материала. Тем самым увеличивается сдвиговая компонента деформации вибрирующей поверхности с кальцитным покрытием, что приводит к более эффективному демпфированию.

Значительный практический эффект получен при реализации результатов исследований на Великолукском мебельном комбинате. Обработка вентвоздуховодов составом — мел, цемент, казеиновый клей с арматурой из мешковины (толщина слоя 5 мм) позволила снизить шум на 10 дБА при затрате 0,5 р./м². Аналогичный эффект может быть получен, если применить мастики ШВИМ-18 или затвердевающие пластмассы большей толщины (стоимость до 10 р./м²).

Таким образом, предлагаемая вибропоглощающая облицовка эффективна, экономична, не требует применения дефицитных материалов, технологична при монтаже (двое рабочих осуществили монтаж облицовки с лесов на длину 10 м при диаметре трубы 350 мм — за половину рабочей смены), не требует дополнительного крепления и специальной термической обработки.

ЛИТЕРАТУРА

[1]. Алексеев С. П. и др. Борьба с шумом и вибрацией в машиностроении. М., «Машиностроение», 1970. [2]. Клюкин И. И. Борьба с шумом и звуковой вибрацией на судах. Л., «Судостроение», 1971, [3]. Никифоров А. С., Будрин С. В. Распространение и поглощение звуковой вибрации на судах. Л., «Судостроение», 1968. [4]. Применение метода вибропоглощения с целью уменьшения шума производственного оборудования. Отчет ВНИИОТ ВЦСПС, Л., 1969.

Поступила 7 октября 1976 г.

УДК 634.0.362

ВЛИЯНИЕ ОТРИЦАТЕЛЬНОЙ ТЕМПЕРАТУРЫ, ДАВЛЕНИЯ И СКОРОСТИ СКОЛЬЖЕНИЯ НА КОЭФФИЦИЕНТ ТРЕНИЯ ДРЕВЕСИНЫ ПО СТАЛИ

В. Н. КУРИЦЫН

Сибирский технологический институт

Теоретически выведена формула для определения величины коэффициента трения мерзлой древесины по стали в зависимости от температуры, давления и скорости скольжения.

При любом виде механической обработки древесины значительная часть затрачиваемой энергии (в некоторых случаях до 50%) тратится на преодоление сил трения режущего органа о стружку, дно и стенки пропила. На коэффициент трения большое влияние оказывают влажность, температура, давление, скорость скольжения и другие факторы, характеризующие состояние древесины и условия ее механической обработки. Особенно велико это влияние при отрицательной температуре. Однако при расчетах силовых показателей резания древесины величина его принимается постоянной.

Поверхность мерзлой древесины состоит из участков древесинного вещества с адсорбированной на его поверхности незамерзшей влагой и ледяных включений. Относительные величины площадей этих участков можно определить по полученным нами формулам. Доля поверхности, занимаемой древесинным веществом с адсорбированной влагой,

$$F = \frac{\rho_0}{\rho_\pi} \left(1 + \frac{0.91 \, W_{\rm H}}{100} \right) \tag{1}$$

и доля поверхности, занимаемой льдом,

$$F_{\rm A} = \frac{1.09 \, \rho_0 \, (W - W_{\rm R})}{100 \, 000} \, , \tag{2}$$

где ρ_0 — плотность абс. сухой древесины, кг/ m^3 ;

 $ho_{\rm A}$ — относительная плотность древесинного вещества, равная 1540 кг/м³ [7];

W — абсолютная влажность древесины, %;

 $W_{\rm H}$ — количество незамерзшей влаги в древесине, которое можно определить по формуле [8]

$$W_{\rm H} = 12 + 18 \exp\left[0.0567 (t+2)\right] \%, \tag{3}$$

где t — значение отрицательной температуры, °С.

Коэффициент трения древесинного вещества по стали f_0 при температуре t определим из приближенного выражения

$$f_0 = 0.5 \exp(0.5 \alpha \Delta t), \tag{4}$$

де α — коэффициент пропорциональности.

По нашим данным, α для сосны — 0,008336; для березы — 0,011228, для лиственницы — 0,014612;

$$\Delta t = 20^{\circ} - t$$
.

При движении какого-либо предмета по льду в месте их соприкосновения образуется тонкая, играющая роль смазки, пленка воды, поэтому коэффициент трения движения очень мал ($f \approx 0.03$). Коэффициент статического трения льда по стали равен 0,4 [1]. Такая большая разница получается вследствие того, что в первом случае трение жидкостное, а во втором — сухое.

Рассмотрение теплового баланса на элементарной площадке контакта льда со сталью и применение теории кратковременного теплового импульса [6] позволили нам получить выражение для коэффициента трения льда по стали

$$f_{\pi} = f_{\pi} + \frac{(f_{c} - f_{\pi}) \gamma_{13}^{2} \left(|t| + \sqrt{t^{2} + 170500 f_{c} \frac{p}{\eta_{3}} vh} \right)^{2}}{54,25p^{2} v f_{c}^{2} L},$$
 (5)

где

 $f_{
m c}$ — коэффициент сухого трения льда по стали;

 $f_{\mathbb{R}}$ — коэффициент жидкостного трения льда по стали;

 η_3 — отношение фактической площади контакта к номинальной;

p — номинальное нормальное давление, дан/см²;

v — скорость скольжения, м/с;

h — толщина пленки воды, способная обеспечить жидкостное трение;

L — размер пятна контакта, м.

Минимальная толщина слоя смазки, при которой начинается жидкостное трение, 10^{-7} м [4]. Примем эту величину за расчетную, хотя не исключена возможность, что она еще меньше.

Площадь фактического контакта находится в тесной зависимости от нормального давления: чем давление выше, тем больше площадь соприкосновения двух тел. Это выражение согласно [1] можно написать

$$\gamma_3 = Bp^{\frac{8}{9}} \quad , \tag{6}$$

где B — константа, включающая в себя характеристики контактирующих поверхностей.

Кроме того, η_3 зависит от величины модуля упругости: чем меньше E, тем больше η_3 (т. е. тем больше площадь фактического контакта). В целях получеция зависимости B от E нами обработано несколько опытных величин η_3 [5] для различных материалов. Найдено, что для $E=90\,000$ дан/см² (жесткость льда) B=0,0011.

Тогда

$$\eta_{3} = 0,0011p^{\frac{8}{9}}.$$

Следует отметить, что размер пятна контакта при изменении давления остается почти постоянным. Увеличение фактической площади касания происходит в основном за счет увеличения количества пятен контакта при сравнительно небольших колебаниях площади каждого из них. По литературным источникам, у материалов с твердостью поверхности 10—15 НВ (что соответствует твердости льда) длина отдельного пятна контакта равна 1,65—3·10 м.

Примем

$$L = 3 \cdot 10^{-4} \text{ M}.$$

Большинство исследователей дает минимальную величину коэффициента трения стали по льду 0,02. Примем для жидкостного коэффициента трения $f_{\tt ж}$ это значение.

Нами установлено, что

$$f_{\rm c} = 0.495 |t|^{-0.164}. (7)$$

Подсчитанные по этой формуле значения $f_{\rm c}$ представлены в табл. 1.

					Таб	лица 1
tºC	5	—10	—20	30	~40	—50
fc	0,377	0,340	0,304	0,283	0,270	0,261

Подставив соответствующие значения в формулу (5), получим

$$f_{n} = 0.02 + \frac{\left(\frac{1}{|t| + \sqrt{\frac{1}{t^{2} + 15.5vp^{\frac{1}{9}}f_{c}}}\right)^{2}(f_{c} - 0.02)}{13440vp^{\frac{2}{9}}f_{c}^{2}}.$$
 (8)

Эта формула не претендует на абсолютную точность, так как при ее выводе был использован ряд приближенных величин, не учтено влияние температуры на модуль упругости льда, но характер зависимости коэффициента трения льда по стали от внешних параметров процесса скольжения она отражает полностью и также вскрывает физический смысл происходящих явлений.

В определенных условиях при расчете по формуле (8) значения f_n могут оказаться больше f_c . Это говорит о том, что плавление льда в данном конкретном случае не происходит, уравнение (8) теряет физический смысл, f_n равен f_c , которое определяется по выражению (7). Расчетные значения, полученные с помощью (8), своим верхним пределом имеют f_c (рис. 1).

Правильность рассмотренной нами математической модели процесса трения льда по стали полностью подтверждают экспериментальные данные других исследователей. Так, в работе [3] приводятся значения коэффициентов трения стали по льду, равные 0,039; 0,028; 0,020; при температуре — 11°С, давлении 0,5 дан/см² и скоростях окольжения 0,5; 1,0 и 1,5 м/с. Для этих же условий коэффициенты трения, рассчитанные по выражению (8), соответственно равны 0,065; 0,043 и

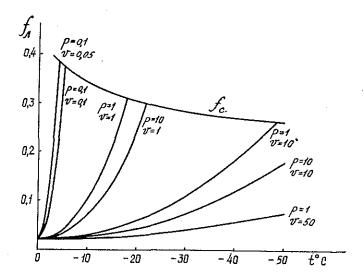


Рис. 1. Зависимость коэффициента трения льда по стали от температуры, давления и скорости.

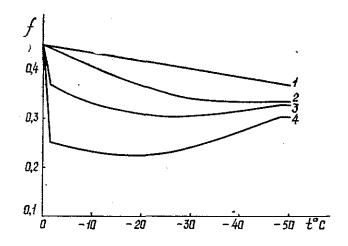


Рис. 2. Зависимость коэффициента трения древесины сосны по стали от температуры.

При влажности; I = 10 %; 2 = 30; 3 = 50; 4 = 100 %.

0,036. Если учесть, что минимальная величина коэффициента трения льда по стали [3] 0,01, а мы ее приняли 0,02, то расчетные коэффициенты больше опытных в среднем только на 22%.

Для определения величины коэффициента трения мерзлой древесины по стали f исходим из того, что в данном случае имеем дело с неоднородным фрикционным контактом. Учитывая, что упругие характеристики компонентов близки друг другу (E льда = 90 000 дан/см²; E древесины = 100 000 дан/см²), можно написать

$$f = \frac{f_0 F + f_\pi F_\pi}{F + F_\pi} \,. \tag{9}$$

Нами произведен расчет по этой формуле для p=1 дан/см² и v=10 м/с.

С понижением температуры коэффициент трения древесины по стали сначала уменьшается, а затем с увеличением влажности древесины снова повышается (рис. 2).

Хорошую сходимость результатов получили при сравнении данных расчета с опытами Б. М. Горонка [2], который исследовал трение скольжения стружки по передней грани резца. Так, при W=80%, v=-0.001 м/с, p=230 дан/см², t=+10—20°С максимальное отклонение расчетных данных от опытных по абсолютной величине составило лишь 4%.

Проведенные теоретические исследования позволили получить формулы для определения коэффициента трения при резании мерзлой древесины и транспортно-переместительных операциях в зимних условиях.

ЛИТЕРАТУРА

[1]. Воуден Ф. П., Тейбор Д. Трение и смазка твердых тел. М., «Машиностроение», 1968, 542 с. [2]. Горонок Б. М. О коэффициенте трения при скольжении древесной стружки по резцу. — В сб.: Технология деревообработки. Красноярск, 1973, с. 69—72. [3]. Корунов М. М. Влияние теплопроводности твердых тел на изменение коэффициентов трения скольжения по льду и снегу. — ИВУЗ, «Лесной журнал», 1962, № 5, с. 63—66. [4]. Крагельский И. В., Виноградова И. Э. Коэффициенты трения. М., «Машиностроение», 1962, 220 с. [5]. Крагельский И. В. Трение и износ. М., «Машиностроение», 1968, 480 с. [6]. Лыков А. В. Теория теплопроводности. М., Изд-во техн. теор. лит., 1952, 392 с. [7]. Перелыгии Л. М., Уголев Б. Н. Древесиноведение. М., «Лесная промышленность», 1971, 286 с. [8]. Чудинов Б. С. Теория тепловой обработки древесины. М., «Наука», 1968, 255 с.

Поступила 17 июня 1976 г.

УДК 621.914

ДИНАМИЧЕСКИЙ РАСЧЕТ ФРЕЗЕРНОГО УЗЛА ОКАНТОВОЧНОГО СТАНКА

Н. И. ТИМОФЕЕВ

Таджикский сельскохозяйственный институт

Рассматривается закон движения фрез окантовочного станка для получения брусьев и технологической щепы. По предлагаемым зависимостям можно рассчитать скорости вращения фрез при различных режимах обработки бревен и оценить степень загрузки двигателя фрезерного узла.

Рассматривается случай, когда окантовочный станок для бревен имеет независимые механизмы фрезерования и подачи (каждый механизм имеет свой электродвигатель). Скорость подачи принимаем постоянной, что близко к действительности при достаточной мощности двигателя на подаче.

Нагрузка на фрезах при обработке каждого бревна непрерывно изменяется из-за переменного объема древесины, превращаемой в щепу по мере продвижения бревна через фрезерный узел. При подаче бревен в станок вершиной вперед возрастающая нагрузка ведет к снижению оборотов фрез, что, в свою очередь, вызывает увеличение подачи на один оборот. Но фрезы могут нормально работать только при подаче не превышающей некоторого значения, определяемого конструкцией фрезы. При несоответствии скорости подачи числу оборотов фре-

зы поверхность среза бревна может вступить в контакт с фрезой. В результате к силам сопротивления от резания прибавляются силы трення, которые увеличивают нагрузку, и обороты фрез резко снижаются. Поэтому скорость подачи следует принимать с учетом возможного снижения оборотов фрез. Отсюда возникает необходимость знать законы движения фрез в различных случаях обработки бревен. Указанные явления имеют место при определенном сочетании параметров динамической системы фрезерного узла и проявляются в разной степени в зависимости от режима обработки, характеристик двигателя и передач и величины вращающихся масс узла фрезерования.

Момент сопротивления вращению фрезы можно принять [2]:

$$M_{\rm c} = M_{\rm xx} + M_{\rm \phi},\tag{1}$$

тце

 $M_{\rm xx}$ — момент холостого хода;

 $M_{\rm d} = 16 \cdot 10^{-5} K U_{\rm of} F_{\rm x} = B F_{\rm x}$ — переменный по величине момент на фрезерование, зависящий от удельной работы резания в данных условиях К, принятой величины подачи на оборот Uи площади поперечного сечения измельчаемого слоя древесины

 $B = 16 \cdot 10^{-5} \, KU_{\text{o}5} - \text{характеристика}$ режима

Для инженерного расчета M_{Φ} можно представить в виде

$$M_{\phi} = M_{\phi 0} + a_1 t + a_2 t^2, \tag{2}$$

t — текущее время обработки;

 $\mathcal{M}_{\phi_0} = B \ F_{x=0}$ — момент на фрезерование в начале обработки бревна

$$a_1 = \frac{B}{T_0} (4F_{x=t/2} - F_{x=t} - 3F_{x=0});$$

$$a_2 = \frac{2B}{T_0} (F_{x=0} + F_{x=t} - 2F_{x=t/2}).$$

Величины M_{ϕ_0} , a_1 , a_2 определяются подстановкой в уравнение (2) моментов на фрезерование при

$$t = 0$$
, $t = T_0/2$, $t = T_0$

 $T_{\rm 0} = l/U$ — полное время обработки одного бревна; l — длина бревна; U — скорость подачи.

 $F_{x=0}$, $F_{x=1/2}$, $F_{x=1}$ — поперечное сечение слоя древесины, превращаемой в щепу, соответственно в начале, середине и конце обработки одного бревна, определяется по чертежу сечения бруса или рассчитывается аналитически.

Для движущего момента на фрезе принимаем линеаризованную зависимость момента от скорости вращения (двигатель асинхронный)

$$M_{\pi} = M_{0} - b\omega, \tag{3}$$

где

ω - текущее значение скорости вращения;

$$M_0 = \frac{[M_{\rm A}] \omega_{\rm c}}{\omega_{\rm c} - [\omega]}; \quad b = \frac{[M_{\rm A}]}{\omega_{\rm c} - [\omega]};$$

 $[M_{\pi}]$ — допустимый максимальный момент на фрезе, принятый с учетом предельного момента приводного двигателя;

[ω] — допустимая минимальная скорость фрезы, принятая с учетом механической характеристики двигателя;

 ω_c — скорость фрезы, соответствующая синхронной скорости двигателя.

Дифференциальное уравнение движения фрезы [1]:

$$I_{\rm np} \frac{d\omega}{dt} = M_{\rm n} - M_{\rm c}, \tag{4}$$

где $I_{\rm пp}$ — приведенная к оси вращения фрезы масса всех вращающих- ся частей фрезерного узла.

Решением уравнения (4) определяется скорость движения фрезы в процессе обработки одного бревна:

$$\omega = e^{-pt} \left[\int_{0}^{t} e^{pt} \cdot q(t) dt + \omega_{\text{Hav}} \right],$$

$$q(t) = \frac{M_0 - M_c}{I_{\text{PD}}}; \quad p = \frac{b}{I_{\text{PD}}};$$

$$(5)$$

где

 $\omega_{\text{нач}}$ — скорость вращения фрезы в начале обработки очередного бревна.

После подстановки в (5) значений q(t) и преобразований получим

$$\omega = \omega_{\text{Hay}} e^{-pt} + \frac{1}{I_{\text{np}} p} \left[\left(\frac{1 - e^{pt}}{e^{pt}} \right) \left(\frac{2a_2}{p^2} - \frac{a_1}{p} - a_3 \right) - a_2 t^2 - \left(a_1 - \frac{2a_2}{p} \right) t \right], \tag{6}$$

где

$$a_3 = M_0 - M_{xx} - M_{\phi 0}$$

Если подача бревен ведется без межторцевых разрывов, то в качестве $\omega_{\text{нач}}$ принимается угловая скорость фрезы в момент конца обработки предыдущего бревна.

Если же обработка ведется с межторцевыми разрывами, то после обработки очередного бревна обороты двигателя увеличиваются и через некоторое время достигается скорость холостого хода.

Дифференциальное уравнение движения фрезы для этого периода

$$I_{\rm np} \frac{d\omega}{dt} = M_{\rm A} - M_{\rm xx}. \tag{7}$$

Решение уравнения (7) в общем виде

$$\omega = e^{-pt} \left[q \int_0^t e^{pt} dt + \omega_{\text{Haq}} \right], \tag{8}$$

где

$$q=\frac{M_{\rm M}-M_{\rm XX}}{I_{\rm mp}}\,;$$

Скорость движения фрез при разгоне

$$\omega = e^{-pt} \left(\omega_{\text{maq}} - \frac{q}{p} \right) - \frac{q}{p} \,. \tag{9}$$

Время, потребное на разгон от $\omega_{\text{нач}}$ до ω_{xx} , определяется из уравнения (9).

$$T_{\rm p} = 2.3 \frac{1}{p} \, \log \, \frac{\omega_{\rm Hall} \, p - q}{\omega_{\rm xx} \, p - q} \,.$$
 (10)

 $T_{\mathbf{p}}=\infty$, практически разгон можно считать закон-Теоретически $\omega_{xx}^{7} = 0.95 \; \omega_{xx}$. Скорость фрезы при холостом ходе чившимся при определяется по принятой характеристике двигателя

$$\omega_{xx} = \frac{M_0 - M_{xx}}{h} \,. \tag{11}$$

При наличии в приводе фрез ременных передач следует учитывать также некоторое снижение оборотов фрезы за счет проскальзы-

вания ремней.

По предлагаемым зависимостям производился расчет скоростей вращения фрез при различных способах подачи бревен в станок вершиной вперед, комлем вперед, с межторцевыми разрывами и без них. При этом оказалось, что наиболее тяжелым режимом, с точки зрения загрузки двигателя, является случай, когда за бревном, поданным вершиной вперед, следует без разрыва бревно комлем вперед.

Подобные расчеты дают возможность подобрать такие динамические характеристики фрезерного узла, при которых скорость вращения фрез при любых режимах работы будет находиться в заданных пределах, что обеспечит при постоянной скорости подачи сравнительно постоянные размеры щепы по длине. Отсутствие контакта обрабатываемого бревна с фрезой будет способствовать снижению мощностных затрат и повышению качества торцевого среза щепы.

Полученные зависимости $\omega = f(t)$ позволяют уже на стадии проектирования станка оценить степень загрузки двигателя фрезерного узла при работе в наиболее тяжелом режиме и проверить правильность выбора скорости подачи бревен в станок. Для ускорения расчетов и возможности анализа различных сочетаний режима обработки и параметров динамической системы предполагается по зависимостям (6) (9) построить номограммы.

Естественно возникает вопрос о точности получаемых результатов при принятых допущениях по движущему моменту и моменту сопротивлений.

Представление механической характеристики двигателя (в пределах рабочей части) линейной зависимостью (3), как известно, часто используется в инженерных расчетах и приводит к результатам с приемлемыми погрешностями.

Момент сопротивлений на фрезе определяется зависимостью (1), где $F_{\rm x}$ — переменная площадь поперечного сечения слоя древесины, превращаемой в щепу, и при подаче бревна с $U={
m const}$ вершиной вперед может быть рассчитана по (12)

$$F_{x} = 0.5 \left[\left(d_{B} + \frac{cUt}{60} \right)^{2} \arccos \frac{H_{\pi}}{\left(d_{B} + \frac{cUt}{60} \right)} - H_{\pi} \sqrt{\left(d_{B} + \frac{cUt}{60} \right)^{2} - H_{\pi}^{2}} \right], \tag{12}$$

 $d_{_{\rm B}}$ — диаметр бревна в вершине; c — сбег бревна;

 $H_{\, \text{\tiny A}}$ — высота бруса.

Момент на фрезерование $M_{\,\Phi}$ пропорционален $F_{\,\mathrm{x}}$ только при постоянной скорости вращения фрез. Но в данном случае будет некоторое снижение оборотов, что приведет к увеличению значений $U_{\rm o5}$ и снижению K. Поэтому можно принять $B={\rm const.}$ К тому же изменение скоростей вращения фрез должно происходить в пределах от скорости холостого хода до скорости опрокидывания. Но у двигателей с жесткой механической характеристикой (во фрезерных узлах окантовочных станков, в отличие от рубительных машин, желательно иметь двигатели с жесткой характеристикой) эти пределы достаточно узки. Поэтому представление истинной зависимости сопротивлений от времени квадратичной зависимостью (2) не может привести к большим погрешностям. Окончательная оценка погрешностей при использовании предлагаемых зависимостей возможна после сравнения расчетных и спытных данных.

ЛИТЕРАТУРА

[1]. Зиновьев В. А., Бессонов А. П. Основы динамики машинных агрегатов. М., «Машиностроение», 1964. [2]. Тимофеев Н. И. Исследование инструмента дискового типа для получения технологической щепы при окантовке бревен фрезерованием. Автореф. дис. на соиск. учен. степени канд. техн. наук. Л., 1972.

Поступила 9 января 1976 г.

УДК 674.023

РАСПИЛОВКА БРЕВЕН ИЛИ БРУСЬЕВ ПАРАЛЛЕЛЬНО ОБЕИМ БОКОВЫМ ОБРАЗУЮЩИМ

И. И. СИДОРОВ

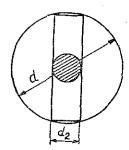
Архангельский лесотехнический институт

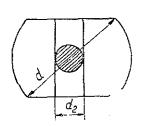
Изложен новый способ распиловки бревен или двухкантных брусьев с выпиливанием ядровой гнили или сердцевины в клиновую вырезку и последующим склеиванием двух деловых частей вырезки в одну доску. Приведены наиболее приемлемые технологические схемы такой распиловки.

При продольной распиловке бревен, имеющих ядровую гниль, снижается полезный выход пиломатериалов. Допуски ядровой гнили зависят от сорта и толщины пиловочного бревна. Для лесоматериалов первых трех сортов, толщиной 26—38 см, допускается несквозная гниль не более ¹/₄ диаметра соответствующего торца бревна. Но поскольку гниль располагается преимущественно в комлевой части ствола, то по мерє перехода к вершинной части указанные размеры допустимы и для бревен диаметром 22—20 см.

При распиловке бревен гниль обычно выпиливают в сердцевинную или две центральные доски. Объем древесины, отходящей с гнилью (рис. 1), составляет

$$V_{p} = d_{r}dl. \tag{1}$$


Приняв


$$d_{\rm r} = 0.25d; \quad d = 4d_{\rm r}$$

получим

$$V_{\rm p} = 4d_{\rm r}^2 I,\tag{2}$$

где d — диаметр бревна, см; d_r — диаметр гнили, см; l — длина бревна, см.

Piic. 1.

PHC. 2.

При распиловке бревен с предварительной брусовкой (рис. 2) потери древесины меньше

$$V_0 = d_r h_\delta t. (3)$$

Принимая толщину бруса $h_{\rm 5}$ равной $0.7~d=2.8~d_{\rm r}$, получим

$$V_{\rm 5} = 2.8d_{\rm r}^2 l.$$
 (4)

Объем древесины, отходящей с гнилью, минимален при толщине бруса, равной диаметру гнили $(h_{\rm 5}=d_{\rm r})$, тогда

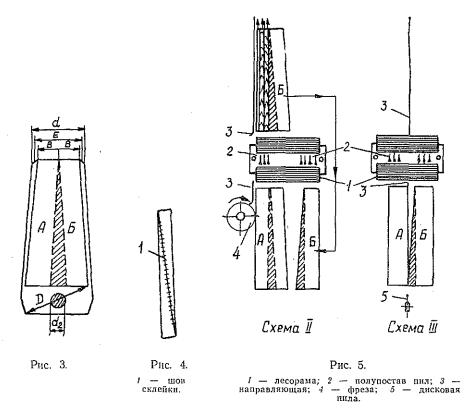
$$V = d_{\rm r}^2 l. \tag{5}$$

Форма ядровой гнили в основном подобна форме ствола [2]. Поскольку образующие ствола и гнили ориентировочно параллельны, то бревна (брусья) лучше распиливать параллельно обеим боковым образующим бревна (бруса) — ПООБ [3], при этом ядровая гниль будет выпиливаться в клиновую вырезку. Объем древесины, выпиливаемой с гнилью, в этом случае составит

$$V = 1.4d_{\rm r}^2 l. (6)$$

Для выявления полезного выхода при таком способе раскроя на Плесецкой лесобазе Архангельской области на одноэтажной лесопильной раме провели опытную распиловку брусьев, выпиленных из 26 бревен диаметром 24 см и длиной 6 м. Для сравнения полученных опытных данных с расчетными кратко рассмотрим основы поставов на распиловку двухкантных брусьев по способу ПООБ. Двухкантный брус мысленно разрезаем на две части А и Б. Часть Б включает сердцевину с гнилью (показано штриховкой на рис. 3).

 ${f y}$ двухкантного бруса, выпиленного из бревна диаметром d, шири-


на пропиленных пластей частей бруса А и Б

$$B_6 = 0.5 \sqrt{d^2 - (h_6 + y_6)^2}. (7)$$

где h_6+y_6 — толщина бруса вместе с пропилом и припуском на усушку.

Исходя из ширины полубруса B_6 подбираем толщины досок в полупоставах. Расположение досок в полупоставе A может быть любым.

Для части бруса B в полупоставе предусматриваются дополнительные пилы для разрезания сердцевины, если гниль отсутствует или располагается не по всей длине бруса. Из сердцевины получаются клиновые вырезки, которые могут быть подобраны попарно и склеены в доски (рис. 4).

Суммарная толщина досок a полупостава из непропиленной части бруса

$$a = E_{\rm n} - B_{\rm 0}, \tag{8}$$

где E_{π} — общая ширина полупостава

$$E_{\pi} = 0.5 \, V \, \overline{d^2 - b_{\text{man}}^2}, \tag{9}$$

здесь $b_{\text{мин}}$ — минимальная ширина обрезных досок по ГОСТу 8486—66.

Из зоны a с учетом усушки и пропилов выходит 1-2 доски.

Дальнейший расчет полупостава ведем по вспомогательным таблицам или лучше по графикам для выбора оптимальных толщин досок из обзольной части бруса [1].

Для сравнения полезного выхода рассмотрим следующие варианты распиловки двухкантного бруса:

- распиловка негнилых двухкантных брусьев параллельно оси симметрии (ПОС);
- распиловка по способу ПОС брусьев с наличием гнили в сердцевине;
 - 3 распиловка брусьев по способу ПООБ.

Расчет поставов сводим в табл. 1, где приведены также данные по опытной распиловке. Анализируя данные табл. 1 по вариантам 1 и 2, видим, что при распиловке по способу ПОС влияние ядровой гнили весомо. При распространении гнили на половине длины бруса снижение выхода составило 11,65%, по всей длине — 23,3%.

Фактический и расчетный выходы при распиловке по способу ПООБ (вариант 3) очень близки; их отношение равно 0,99. Н. А. Батин [1] приводит значения отношений по отдельным опытным распи-

Таблица 1

Daniel Carrier Const	Полезный выход т, %				
Вариант распиловки бруса	из бруса	из клина	всего		
1. Параллельно оси симметрин — ПОС, брус без гнили	53, 3		53,3		
2. То же, брус с гиилью диаметром 6 см, длиной 3 м	41,65		41,65		
3. Параллельно обеим боковым обра- зующим ПООБ	50,2* 49,9*	8.7 5.5	58,9 55,4		
σ % υ % m % <u>p</u> % <u>ηοπ</u>	± 5,3 ± 10,6 ± 1,0 ± 2,02 0,99	± 2,5 ± 45,5 ± 0,49 ± 8,9			

Примечание: *—выход из бруса без сердцевины. В числителе—расчетные данные; в знаменателе — по опытным распиловкам. Брусья распиливали полупоставом $\frac{2}{40} - \frac{1}{25} - \frac{1}{19}$.

ловкам в пределах 0,94-0,99. Если учесть выход из клиновой вырезки, то эффект от распиловки по способу ПООБ будет еще большим. Увеличение расчетного выхода при распиловке брусьев по способу ПООБ составило 5,6% (табл. 1).

Опытные распиловки с вырезкой гнили в клин, проведенные на шпалорезных станках, подтвердили преимущества этого способа, позволяющего лучше использовать низкокачественную древесину. На Плесецкой лесобазе было распилено 120 дровяных бревен [4], на нижнем складе Подюжского леспромхоза Архангельской области — 188 тарных осиновых кряжей, из них 84 дровяных [5]. Сортность пиломатериалов улучшается, так как низкокачественная часть древесины выпиливается в клиновую вырезку и лучше используется бессучковая зона.

Для распиловки по способу ПООБ наиболее приемлемы следующие технологические схемы:

 I — брус полупоставом пил распиливается на двух лесопильных рамах или на одной раме за два прохода;

II — брус двумя полупоставами пил распиливается на одной раме (рис. 5);

III — брус, предварительно разрезанный на части A и B, распи-

ливается на одной раме (рис. 5).

Распиловка по схеме I пояснений не требует. При распиловке по схеме II перед рамой устанавливают две приводные вертикальные фрезерные головки 4, образующие стороны боковых досок или снимающие закомелистость. С обеих сторон рамы для упрощения заправки бруса предусмотрены металлические направляющие $\it 3$. В пильной рамке лесопильной рамы установлено два полупостава пил.

Брусья в раму подаются так, чтобы левый полупостав отпиливал часть бруса А и одновременно распиливал ее на доски. В то же время правый полупостав распиливает часть Б предыдущего бруса.

При распиловке по схеме II размер наибольшего по ширине бруса, пропускаемого через раму, определяется из формулы

$$\Pi = 1.5d + 2cl + 3e$$

⁶ «Лесной журнал» № 1

$d = 0.67 (\Pi - 2cl - 3e),$

где Π — просвет пильной рамки, см;

d — диаметр бревна в вершине (ширина бруса), см;

cl — общий сбег на длине бревна (бруса), ом;

Зе — общий зазор между брусьями и пильной рамкой, см.

Подставляя числовые значения в формулу, находим, что в лесопильной раме P-65 по схеме II можно распиливать двухкантные брусья

с шириной в вершине до 34 см.

При распиловке по схеме III перед рамой устанавливают станок с дисковой круглой пилой для деления бруса на части A и B. По продольной оси симметрии лесопильной рамы закрепляют направляющую 3, к которой прижимается при подаче в раму часть бруса A; вторая часть бруса B распиливается на доски правым полупоставом пил. Видимо, схемы II и III наиболее предпочтительны, так как позволяют распиливать двухкантные брусья без установки дополнительного рамного оборудования, тем более, что вместо фрез A (рис. B) можно установить в полупостав B2 дополнительную пилу.

Для увеличения полезного выхода при распиловке пиловочного сырья с ядровой гнилью необходимо сочетать индивидуальный и групповой методы раскроя. В предлагаемом способе раскроя ПООБ совмещаются эти методы, так как двухкантный брус запускается в раму по

левому полупоставу с учетом расположения гнили в брусе.

Опытные распиловки по способу ПООБ должны быть продолжены, в первую очередь, на брусьях с гнилью, в целях выявления не только количественного, но и качественного выхода пиломатериалов.

ЛИТЕРАТУРА

[1]. Батин Н. А. и др. Поставы на распиловку бревен. М., «Лесная промышлен-пость», 1966. [2]. Использование низкокачественной древесины и отходов лесозаготовок. Справочник под ред. проф. Ф. И. Коперина. М., «Лесная промышленность», 1970. [3]. Сидоров И. И. Распиловка бревен или бруса параллельно обенм боковым образующим — Авт. свид. № 61492, 15.11.1940. [4]. Сидоров И. И. Дровяное долготье — резерв пиловочного сырья. — Бюлл. технико-экономической информации. Архангельский Совнархоз, 1959. [5]. Сидоров И. И. Распиловка тарных кряжей на пиломатериалы. Научно-техническая информации по лесной промышленности, сб. 17; М., 1961.

Поступила 25 марта 1975 г.

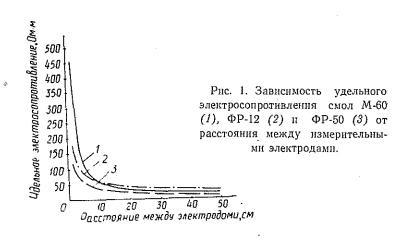
УДК 537.723:621.792.052

О МЕТОДЕ ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ КЛЕЕВЫХ СОЕДИНЕНИЙ ДРЕВЕСИНЫ

Г. И. ШУСТЕРЗОН

Иркутский институт народного хозяйства

Даны метод измерения и зависимость значений электрического сопротивления клеевых соединений древесины от полноты отверждения клеевого шва.


Известные зависимости между изменениями в химическом строении и структуре полимеров и их электрическими свойствами [5] позволили разработать эффективные методы ускоренных испытаний различной полимерной продукции [2, 3, 7], в том числе и изделий деревообработки [1, 4].

Анализ соответствующих источников показывает, однако, что электрические свойства клееной древесины изучены недостаточно, в связи с чем отсутствуют и сведения об электрических методах испытаний клеевых соединений.

В статье приведены некоторые результаты применения метода измерения электрического сопротивления (как наиболее простого) для изучения кинетики отверждения клеевых соединений. Эта методика может быть использована при неразрушающем методе оценки степени отверждения клеевых швов в процессе изготовления деревянных конструкций [6].

Исследовали клеевые соединения древесины сосны (образцы 50×10 мм) на водосодержащих клеях холодного отверждения, широко применяемых в деревообработ-ке — M-60, КБ-3, ФР-12, ФР-50 и ФР-100.

Электроды разных типов (проволочные, фольговые, штыревые) закладывали в шов непосредственно при скленвании образцов. При этом исходили из условия, чтобы металл электродов не вступал в химическое взаимодействие с компонентами примененного клея (в частности, с кислыми отвердителями фенолформальдегидного клея КБ-3), а сами электроды не ухудшали бы качества скленвания и не влияли на толщину клеевой прослойки; это обеспечивалось применением электродов малой толщины $(0.02-0.05 \, \mathrm{mm})$; более толстые штыревые электроды заранее втапливали в древесину заготовок. Для получения сопоставимых результатов в каждой партии образцов применяли электроды одного сечения и располагали их на одинаковом рас-стоянии друг от друга. Величину электросопротивления находили как среднее из результатов измерений для пяти образцов.

Опыты показали, что значения удельного электросопротивления смол и неотвержденных клеев зависят от расстояния между электродами (рис. 1). Эта зависимость в первом приближении может быть описана уравнением вида

$$p = a + \frac{b}{I},\tag{1}$$

где p — удельное электросопротивление, Ом·м;

t — расстояние между электродами, м;

а, b — коэффициенты, зависящие от вида смол, отвердителей и их концентрации.

При установке электродов отклонения между фактическими и рассчетными расстояниями (Δl) достигают 3 мм. Задаваясь относитель-6*

ной ошибкой параллельных измерений $\left(\frac{\Delta p}{p}\cdot 100\%\right)$ не свыше 5%, по формуле (1) нашли, что минимальное расстояние между электродами для соединений на принятых клеях составляет 0,04 м и выдерживали его при всех измерениях.

Очевидно, что из-за содержания в клеях воды и диссоциирующих отвердителей, электропроводимость клеевых швов древесины носит чрезвычайно сложный характер. Воздействие электричества приводит к необратимым изменениям в образцах, вследствие чего невозможно проводить измерения по величине остаточного тока [5], поэтому применили методику измерений, позволяющую снимать показания приборсв при их кратковременном подключении к электродам. Продолжительность подключения регулировали с помощью реле времени (в пределах от 2 до 5 с). Для снижения влияния электрического тока на образцы использовали омметр E-6-10, дающий наименьшее, по сравнению с другими имеющимися приборами, напряжение на измеряемых сопротивлениях (4,5—15 В).

Установлено, что начальные значения электрического сопротивления клеевых швов зависят от вида клея, концентрации и количества введенного отвердителя, влажности древесины, времени хранения смол перед употреблением, чистоты отвердителя и др. Обнаружено также, что с увеличением времени отверждения электросопротивление клеевых швов в целом возрастает, причем характер изменения сопротивления зависит от количества введенного в клей отвердителя.

Используя многорычажное запрессовочное устройство, которое позволило одновременно с измерениями значений электрического сопротивления, проводить испытания на прочность при скалывании по клеевому шву (без распрессовки остальных образцов), удалось проследить взаимосвязь изменения электросопротивления клеевых швов с изменением прочности соединений и процентом их разрушения по древесине.



Рис. 2. Изменение средних значений электросопротивления (р), процента разрушения по древесине (%) и прочности на скалывание (з) в зависимости от времени отверждения соединений сосны, склеенных клеем КБ-3.

Из рис. 2 видно, что резкое возрастание электрического сопротивления клеевых швов совпадает во времени с прекращением роста прочности соединений, причем разрушение соединений по древесине приближается к 100%. Интересно также, что в промежутке времени от 4,5 до 5,5 ч параллельно некоторому снижению электросопротивления сни-

жается и прочность соединений. Это, вероятно, связано с структурообразующими процессами, вследствие которых изменяется характер электрической поляризации и возникают усадочные внутренние напряжения в клеевом шве.

В ряде случаев относительные ошибки параллельных измерений достигают значительных величин, что, видимо, объясняется различным влиянием многочисленных процессов, протекающих при формировании клеевого шва (деформация клея и древесины, диффузия легколетучих и подвижных, образование двойных электрических слоев на контактах металл — полимер, металл — древесина и др.). Дополнительным источником ошибок может быть нарушение контакта между электродами и клеем из-за его усадки.

Очевидно, что метод измерения электросопротивления клеевых соединений древесины нуждается в дальнейшем усовершенствовании. Однако полученные результаты подтверждают пригодность принятой методики измерений и позволяют вплотную подойти к разработке метода неразрушающего контроля полноты отверждения клеевого шва строительных деревянных конструкций.

ЛИТЕРАТУРА

§1]. Белик А. К. Применение ультрафиолетового налучения для отверждения полиэфирных покрытий на древесине М., 1972. [2]. Иртуганова С. Х., Дудукалова Н. И. К методике прогнозирования долговечности полимерных защитных покрытий. — «Заводская лаборатория», 1969, № 11. [3]. Методы неразрушающих испытаний. Пер. с анг. под ред. Л. Г. Дубикого. М., «Мир», 1972. [4]. Михайловская К. П. Об электрических методах измерения влажности древесины. — В Межвуз. сб. трудов по механической технологии древесины. Разд. 2. Механизация и автоматизация деревообрабатывающих производств. Вып. 1. Красноярск, 1973. [5]. Сажин Б. И. и др. Электрические свойства полимеров. Л., «Химия», 1970. [6]. Шустерзон Г. И., Бакштановский Ю. А. Исследование кинетики отверждения клеев методом измерения электросопротивления — В сб.: Вопросы совершенствования строительства. Иркутск, 1973. [7]. Едегег Р. Neue zerstörungsfeste elektrische Prüfmethode zur Überwachung von Aushärtevorgängen an Duromeren. «Gummi. Asbest. Kunststoffe.», 1973, 26, № 1.

Поступила 26 августа 1975 г.

УДК 539.319: 674.053: 621.933.6

ИССЛЕДОВАНИЕ НАПРЯЖЕННОГО СОСТОЯНИЯ В РАМНОЙ ПИЛЕ

Я. М. ШИРЯЕВ, М. Я. ГЕМБИЦКИЙ, В. М. ЛОБАНОВ Ленинградская лесотехническая академия

Проведено методом фотоупругости экспериментальное исследование концентрации напряжений в выкружке зубьев рамных пил при различных эксцентриситетах линии натяжения. Получены значения коэффициентов концентрации напряжений. С увеличением эксцентриситета коэффициент концентрации напряжений уменьшается. Исследовано напряженное состояние в опасном поперечном сечении пилы.

Наибольшие номинальные нормальные напряжения $\sigma_{\text{н}_{max}}$ в поперечном сечении рамной пилы, возникающие от силы натяжения, определяются [1]

$$\sigma_{H_{max}} = \frac{P}{F} (1 + 6\beta), \tag{1}$$

где P — сила натяжения;

F — площадь поперечного сечения;

 ∂ — эксцентриситет линии натяжения.

В действительности же, в зоне около основания зубьев на переходной поверхности (межзубовой впадине), являющейся геометрическим концентратором напряжений, наблюдается сложное напряженное состояние. Наибольшие местные напряжения σ_{mmax}

$$\sigma_{\mathbf{M}_{max}} = K \sigma_{\mathbf{H}_{max}}, \tag{2}$$

где К — коэффициент концентрации напряжений.

Зона концентрации напряжений — очаг возникновения и развития трещин, приводящих к поломке пил.

Для определения концентрации напряжений в межзубовой впадине использовать методы теории упругости затруднительно из-за довольно сложной конфигурации переходной поверхности [4]. Зона концентрации напряжений около межзубовой впадины занимает малый участок, это не дает возможности применить для экспериментального исследования различные проволочные тензометрические датчики.

Исследование проводили методом фотоупругости при комнатной температуре на модели из эпоксидной смолы ЭД-6, имитирующей рамную пилу. Модель подвергали действию внецентренной нагрузки при комнатной температуре. Исследовали тип зубьев рамной пилы согласно ГОСТу 5524—75; профиль зуба П, т. е. зуб с ломанолинейной задней гранью.

При обработке модели было исключено возникновение напряжений. Образцы толщиной 4 мм подвергали внецентренному растяжению в специальном нагрузочном устройстве, которое устанавливали для исследований на поляризационно-оптической установке — координатно-синхронном поляриметре КСП-7, изготовленном в Ленгосуниверситете им. А. А. Жданова. Чисто растягивающие силы выбирали такими, чтобы образец, оставаясь в упругой стадии, имел достаточные максимальные напряжения; предел пропорциональности материала 530 кгс/см², модуль упругости 37 500 кгс/см² и коэффициент Пуассона 0,38. Нагружение прекращали, если максимальная деформация составляла не более 60% от соответствующей деформации предела пропорциональности.

Известно, что с помощью поляризационно-оптического метода можно получить напряжение из непосредственных измерений только на контуре, а вне его — довольно сложным графическим или аналитическим путем [2], [3], [5]. В точках, лежащих на свободном контуре (т. е. не имеющем внешних касательных и нормальных напряжений), одно—главное напряжение—направлено по касательной к контуру, а другое, равное нулю, — перпендикулярно к контуру. Поэтому на свободном контуре численная величина не равного нулю главного нормального напряжения может быть непосредственно определена по картине полос или по оптической разности хода. На контуре выкружки зуба нормальное напряжение $\sigma_{\rm M}$ может вычисляться из порядка интерференционных полос $n_{\rm M}$ с использованием основного закона фотоупругости в форме

$$\sigma_{\rm w} = C n_{\rm w},\tag{3}$$

где *С* — постоянная материала образца данной толщины. Коэффициент концентрации напряжений определяется как

$$K = \frac{\sigma_{\text{M}max}}{\sigma_{\text{H}max}} = \frac{n_{\text{M}max}}{n_{\text{H}max}}.$$
 (4)

По полученным экспериментальным данным была построена эпюра распределения контурных напряжений $\sigma_{\rm M}$ по межзубовой впадине

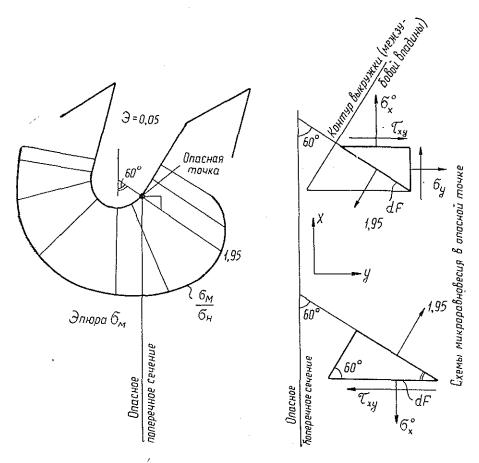


Рис. 1. Эпюра распределения контурных напряжений $\sigma_{\rm M}$ по выкружке зуба при эксцентриситете $\vartheta=0{,}05$. Нахождение опасного поперечного сечения и величины $\sigma_{\rm M}^0$.

(рис. 1) и найдены коэффициенты концентрации напряжений при различных эксцентриситетах.

				Таб	лица 1
Э	0,05	0,1	0,15	0,20	0,25
$K = \frac{\sigma_{Mmax}}{\sigma_{Hmax}}$	1,95	1,85	1,81	1,74	1,69

Для определения напряженного состояния в опасном поперечном сечении пилы, через точку контура, где $\sigma_{\rm M} = \sigma_{\rm M} max$, проводим искомое сечение, в котором возникают нормальные $\sigma_{\rm x}$, $\sigma_{\rm y}$ и касательные $\tau_{\rm xy}$ напряжения. Разность главных напряжений $\sigma_{\rm 1} - \sigma_{\rm 2}$ находим из закона Вертгейма [5, 6].

Для нахождения нормальных напряжений σ_x и σ_y используем метод численного интегрирования в прямоугольных координатах [3]. В случае плоского напряженного состояния σ_x , σ_y и τ_{xy} связаны следующими дифференциальными зависимостями:

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} = 0;$$

$$\frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} = 0.$$
(5)

(Ось x проводам вдоль сечения, ось y — перпендикулярно к сечению). Общий интеграл дифференциального уравнения (5)

$$\sigma_x = \sigma_x^0 - \int \frac{\partial \tau_{xy}}{\partial y} \, dx, \tag{6}$$

где σ_x^0 — значение σ_x в начале или в конце пути интегрирования.

Заменяя дифференциалы в (6) конечными разностями и интегрирование суммированием, окончательно получим выражение для ох

$$\sigma_x = \sigma_x^0 - \sum_{i=1}^{\Delta x} \Delta \tau_{xy} \frac{\Delta x}{\Delta y}. \tag{7}$$

В данном исследовании величину σ_x^0 находили из рассмотрения микроравновесия в точке пересечения опасного поперечного сечения с контуром межзубовой впадины. На рис. 1 показан элемент в окрестности этой точки с действующими по его различным граням напряжениями. Проектируя все силы на ось x и составляя уравнения равновесия $\Sigma x = 0$, получим

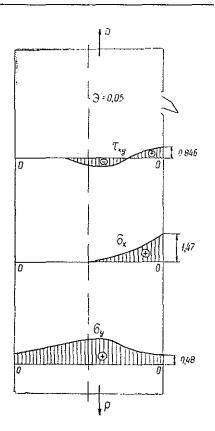
$$\sigma_x^{\overline{a}} dF - 1,95 dF \cos^2 30^{\circ} = 0;$$

 $\sigma_x^{0} = 1.47.$

Величины напряжений даны в безразмерной форме, т. е. в виде отношения $\frac{\sigma}{\sigma_{u}}$.

На расстояниях 1,5 мм вверх и вниз от исследуемого сечения проводятся два вспомогательных сечения, в которых определяются δ , φ и τ_{xy} . Точки выбирали таким образом, чтобы $\Delta x=3$ мм. Зная σ_x , находим σ_y

$$\sigma_{\mathbf{v}} = \sigma_{\mathbf{x}} - (\sigma_1 - \sigma_2) \cos 2\varphi. \tag{8}$$


По полученным данным построены эпюры σ_x , σ_y и τ_{xy} для случая $\mathcal{J}=0.05$ (рис. 2). Значения ординат на эпюрах даны в безразмерной форме и представляют собой отношение соответствующих напряжений к номинальному $\sigma_{u_{max}}$. Правильность построения этих эпюр проверяли с помощью уравнений равновесия, составленных для отсеченной опасным сечением части модели.

Касательные напряжения τ_{xy} имеют различные знаки и достигают сравнительно небольших значений, вдали от очага концентрации они полностью исчезают. Нормальные напряжения σ_x монотонно убывают от зоны концентрации и вдали от нее близки к нулю.

Рис. 2. Энюры напряжений τ_{xy} , σ_x и σ_y в опасном поперечном сечении пилы; $\beta=0,05$.

Нормальные напряжения о, вдали от зоны концентрации изменяются по почти линейному закону, нарастая по направлению к центру тяжести сечения. При приближении к очату жонцентрации нормальные напряжения о в поперечном сечении падают. Это обстоятельство не противоречит общим положениям теории концентрации напряжений: концентрация напряжений обусловлена главным образом контурными нормальными напряжениями ом, эпюра которых дана на рис. 1. В зоне концентрации наблюдается сложное напряженное состояние.

Тажим образом, применение метода фотоупругости позволяет определить значения коэффициентов концентрации напряжений при различных эксцентриситетах линии натяжения и исследовать напряженное состояние в опасном поперечном сечении пилы.

ЛИТЕРАТУРА

[1]. Грубе А. Э. Дереворежущие инструменты. М., «Лесная промышленность», 1971. [1]. Кокер Э., Файлон Л. Оптический метод исследования напряжений. Л.— М., ОНТИ, 1936. [3]. Пригоровский Н. И. Современные развития поляризационно-оптического метода исследования напряжений. — «Заводская лаборатория», 1949, № 3. [4]. Работнов Ю. Н. Сопротивление матерналов. М., ГИФМЛ, 1962. [5]. Фрохт М. Фотоупругость. М., Гостехиздат, 1948, т. 1; 1950, т. 2. [6]. Эдельштейн Е. И. О методе компенсации Сенармона. — Сборник по упругости и пластичности, ЛГУ, 1963, № 2, с. 153—168.

Поступила 9 ноября 1976 г.

УДК 634.0.812.1

ДИЭЛЕКТРИЧЕСКИЕ СВОИСТВА ДРЕВЕСИНЫ ЕЛИ НА СВЕРХВЫСОКИХ ЧАСТОТАХ

Г. И. ТОРГОВНИКОВ, Ю. В. КОТОВ, Н. А. МАНУЙЛОВ, В. Б. САВИН, В. Г. КУЗЬМИНА

Московский институт электронного машиностроения. ЦНИИМЭ

Излагается методика измерения диэлектрических свойств древесины на сверхвысоких частотах волноводным методом. Приводятся результаты экспериментальных исследований диэлектрических свойств древесины ели на частоте 2375 МГц в диапазоне влажности 1-112% при температуре $20-90^{\circ}\mathrm{C}$.

Прогресс электронной промышленности привел к появлению сверхвысокочастотных (СВЧ) генераторов, обладающих высокими значениями КПД (более 80%) и уровня мощности (более 700 кВт) в сочетании

с высокой надежностью и низкой стоимостью. В связи с этим открываются новые возможности обработки древесины и древесных материалов с помощью энергии сверхвысокочастотного электромагнитного поля, связанные с рядом особенностей СВЧ: возможностью получения высокой концентрации энергии в единице объема; способностью поля СВЧ проникать на значительную глубину внутрь материала; отсутствием контакта с обрабатываемым материалом; возможностью рассеивать или концентрировать энергию внутри материала; независимостью времени нагрева до заданной температуры от объема и формы изделия; практически 100%-ным КПД преобразования энергии СВЧ поля в тепло, выделяемое в нагреваемом объекте.

Для энергетических расчетов технологических процессов, связанных с СВЧ обработкой древесины и древесных материалов, необходимо знать диэлектрические свойства древесины, характеризуемые комплексной диэлектрической проницаемостью

$$\varepsilon^* = \varepsilon' - i \,\varepsilon'' = \varepsilon' \,(1 - i \,\mathrm{tg}\,\delta),\tag{1}$$

где ϵ' — диэлектрическая проницаемость (действительная часть); ϵ'' — коэффициент потерь диэлектрика;

tg 3- тангенс угла потерь

$$tg \, \hat{o} = \frac{\epsilon''}{\epsilon'};$$

$$i = \sqrt{-1}.$$

Эти свойства зависят от породы, плотности, влажности, температуры древесины, частоты поля и его ориентации относительно волокон. Апализ известных данных [3] показал, что свойства древесины на сверхвысоких частотах изучены очень слабо. Поэтому в ЦНИИМЭ совместно с МИЭМ была разработана методика определения диэлектрических свойств древесины на СВЧ и проведены экспериментальные исследования.

Для определения комплексной диэлектрической проницаемости был использован волноводный метод короткого замыкания, рекомендованный А. Р. Хиппелем [5]. Сущность метода заключается в определении вхедного сопротивления линии с образцом диэлектрика $z_{\rm вx}$ (рис. 1), выражающегося через постоянную распространения волн в образце

$$\gamma = \alpha + i\beta, \tag{2}$$

где а постоянная затухания;

в — фазовая постоянная.

Постоянная распространения ү, в свою очередь, определяется комплексной диэлектрической проницаемостью

$$\gamma = \frac{2\pi}{\lambda_0} \sqrt{\frac{\lambda_0}{\lambda_{\rm kp}} - (\varepsilon' - i\varepsilon'')}, \qquad (3)$$

где λ_0 — длина волны в свободном пространстве;

λ_{ир}— критическая длина волны в линии.

Входное сопротивление короткозамкнутой линии без потерь вычисляется по формуле

$$z_{\text{BX}} = i \, \mathbf{z}_0' \, \text{tg} \, \beta l = \mathbf{z}_0' \, \text{th} \, i \, \beta l, \tag{4}$$

где z_0' — характеристическое, или эквивалентное сопротивление линии, заполненной диэлектриком;

l — длина линии, заполненной диэлектриком (длина образца).

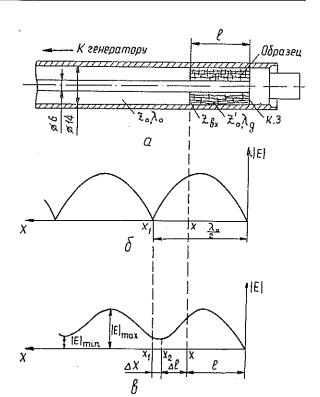


Рис. 1. К описанию волноводного метода измерений є' и tg д.

а — положение образца в короткозамкнутой линии; б — распределение электрического поля в линии без диэлектрика;
 в — распределение поля в линии с диэлектриком на конце.

Так как потери в диэлектрике не равны нулю, то в формуле (4) $i\beta$ следует заменить постоянной распространения

$$\gamma = \alpha + i \beta$$
.

Тогда

$$z_{\rm BX} = z_0' \, \text{th} \, \gamma l. \tag{5}$$

Выражая $z_0^{'}$ через характеристическое сопротивление z_0 линии, заполненной воздухом, получим

$$\frac{1}{l\beta_0 l} \frac{z_{\text{BX}}}{z_0} = \frac{\text{th } \gamma l}{\gamma l}, \qquad (6)$$

где $\beta_0 = \frac{2\pi}{\lambda_B}$ — фазовая постоянная волн в линии, заполненной воздухом.

Поскольку наиболее просто измеряемыми величинами являются коэффициент бегущей волны K_6 . а также фаза стоячей волны Θ , то уравнение (6) приводим к виду [1]

$$\frac{\operatorname{th} \gamma l}{\gamma l} = -i \frac{\lambda_0}{2\pi l} \frac{K_6 - i \operatorname{tg} \Theta}{1 - i K_6 \operatorname{tg} \Theta}. \tag{7}$$

В случае коаксиальной линии, где возбуждаются колебания типа TEM, длина волны в ней совпадет с длиной волны в свободном пространстве $\lambda_0 = \kappa_{\rm B}, \; \lambda_{\rm Kp} = \infty\,,\;\;$ а в уравнении (7) постоянная распространения (3) примет вид

$$\gamma = \frac{2\pi}{\lambda_0} \sqrt{-\varepsilon' + i\varepsilon''} \,. \tag{8}$$

В уравнении (7) заданными являются значения l и λ_0 , а измеряемыми — K_0 и Θ . Решив уравнение (7) относительно γ , можно найти ϵ' и tg ℓ 0 по формулам [1]

$$\varepsilon' = \frac{\beta^2 - \alpha^2}{\beta_0^2} \,; \tag{9}$$

$$tg \,\delta = \frac{2\alpha\beta}{\beta^2 - \alpha^2} \,, \tag{10}$$

где β_0 — фазовая постоянная волны в свободном пространстве

$$\beta_0 = \frac{2\pi}{\lambda_0} \, .$$

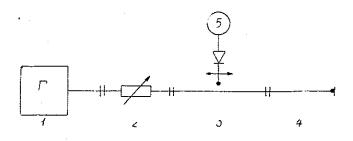


Рис. 2. Схема измерительной установки.

генератор Г4-9; 2 — развязывающий аттенюатор и ферритовый вентиль; 3 — измерительная линия P1-2; 4 — отрезок короткозамкнутой коаксиальной линии; 5 — микроамперметр М-95.

Схема измерительной установки приведена на рис. 2. Методика измерений сводится к выполнению следующих операций (рис. 1).

1. С помощью измерительной линии определяем положение любого минимума напряженности электрического поля |E| в короткозамкнутой линии без образца, например x_1 (рис. 1, δ).

2. Аналогичным образом находим положение минимума стоячей волны в линии с образцом длиной l, например x_2 (рис. $1, \mathfrak{g}$). Минимум стоячей волны, не равный нулю вследствие потерь в древесине, переместится в сторону образца, так жак длина волны $\lambda_{\mathfrak{g}}$ в нем мень-

ше λ_o .

3. Определяем смещение минимума стоячей волны

$$\Delta x = x_1 - x_2. \tag{11}$$

4. Вычисляем фазу стоячей волны Θ в плоскости x, определяемую расстоянием Δl ,

$$\Delta l = \frac{\lambda_0}{2} - l - \Delta x; \tag{12}$$

$$\Theta = \frac{2\pi \Delta I}{\lambda_0} \,. \tag{13}$$

5. Определяем коэффициент бегущей волны

$$\mathcal{H}_6 = \frac{E_{m^*n}}{E_{max}}.$$

При квадратичной вольтамперной характеристике кристаллического детектора

$$K_6 = \sqrt{\frac{I_{min}}{I_{max}}},\tag{14}$$

где I_{min} . I_{max} — минимальное и максимальное показания амперметра.

Если $K_{\mathfrak{s}} \leqslant 0,1$, то коэффициент бегущей волны

$$K_6 = \frac{\pi \Delta x'}{\lambda_0},\tag{15}$$

где $\triangle x'$ — расстояние между двумя положениями зонда измерительной линии, соответствующими удвоенным показаниям микроамперметра по сравнению с минимальными его показания-

Уравнение (7) решали с помощью ЭВМ М-222. Программа составлена таким образом, что заданными величинами были Δx , $\Delta x'$, λ_0 н

l, а искомыми — ε' и tg δ .

Опыты проводили на частоте 2375 МГц — наиболее высокой из разрешенного для промышленного использования в СССР диапазона СВЧ, на которой работают мощные серийно выпускаемые энергетические СВЧ генераторы.

Древесина — влажный анизотропный материал, диэлектрические свойства которого различаются по трем общепринятым при рассмотрении структуры древесины направлениям: продольному L, радиальному R и тангентальному T.

Поле E в коаксиальной линии направлено радиально, что позволяет измерять в ней свойства древесины одновременно в двух направ-

лениях. Образцы изготовляли таким образом, что поле E было направлено поперек волокон (т. е. направление L параллельно оси коаксиальной линии) и свойства измерялись одновременно в радиальном

и тангентальном направлениях (ϵ_{RT}' и tg δ_{RT}).

Диэлектрические свойства древесины были определены в диапазоне влажности 1,1—112% и температуры 20—90°С. Образцы, имеющие внешний диаметр 14 мм, внутренний диаметр 6 мм, длину 20 и 40 мм (рис. 1), изготовляли таким образом, чтобы они плотно входили в волновод. Влажность и размеры образцов доводили до заданных величин, после чего их выдерживали в закрытых полиэтиленовых пакетах для выравнивания влажности по объему. Влажность контролировали путем взвешивания сразу после измерений (масса абс. сухих образцов была определена заранее). Для каждой комбинации температуры и влажности измеряли партию образцов

Объемная масса абс. сухих образцов — $0.45~\rm r/cm^3$, при гигроскопической влажности — $0.5~\rm r/cm^3$, число годичных колец — $4-8~\rm B~1~cm$.

Отрезок короткозамкнутой коаксиальной линии, в который помещали образцы, отрезок короткозамкную коакснальной линин, в который помещали образды, был снабжен кожухом, через который прокачивали от термостата воду требуемой температуры. Перед опытом образцы содержали в термостате при заданной температуре. Температуру контролировали термометром и поддерживали с отклонением не более ±1°C от заданной: 20, 40, 70, 90°C.

Результаты опытов отражены на графиках рис. 3, 4. Как видим из рис. 3, с увеличением влажности от 0 при постоянной температуре до предела гигроскопичности (28—30%) ε_{RT}' изменяется нелинейно. При дальнейшем насыщении влагой $arepsilon_{RT}'$ растет по зависимости, практически близкой к линейной. Абсолютная величина $arepsilon_{RT}'$ при температуре 20°C возрастает от 1,7 до 8 с изменением влажности от 1,1 до 112%. При влажности выше гигроскопической с увеличением температуры от 20 до 90°С ϵ_{RT}' повышается на 25—40%. При температуре 20°C tg δ_{RT} с увеличением влажности от 0 растет (рис. 4) и достигает - максимума (0,23) при влажности точки насыщения волокон 28—30 %;

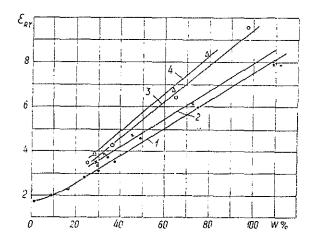


Рис. 3. Зависимость ε'_{RT} ели от влажности и температуры. 1-t=20°C; 2-t=40°C; 3-t=70°C; 4-t=90°C.

при дальнейшем увеличении влажности до 112% его значение снижается до 0.18. Повышение температуры до $70-90^{\circ}$ С ведет к снижению $\lg \delta_{RT}$ в среднем на 20%. Очевидно, что форма связи влаги с древесиной оказывает решающее влияние и точки перегибов кривых $\varepsilon' = \varphi(W)$ и $\lg \delta = \varepsilon(W)$ соответствуют уровню адсорбционной и гигроскопической влажности.

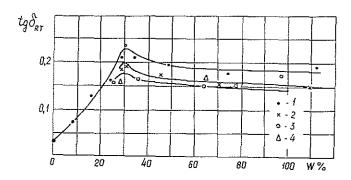


Рис. 4. Зависимость $\operatorname{tg} \delta_{RT}$ ели от влажности и температуры. Обозначения те же.

Статистическая обработка результатов показала, что коэффицент вариации ε_{RT}' находился в пределах 2—10 и tg $\lambda_{RT} = 2.8 - 18\%$, а показатель точности соответственно в пределах 0,7—3,1 и 0,9—5,5%.

На СВЧ характер взаимодействия электрического поля с молекулами вещества отличается от характера взаимодействия на низких частотах. Это объясняется тем, что период колебаний поля на сверхвысоких частотах сравним с временем релаксации молекул и между вектором напряженности поля и вектором поляризации возникает фазовый сдвиг, вызывающий уменьшение є и увеличение tg с с ростом частоты.

Во влажной древесине молекулы адсорбционной и гигроскопической влаги не могут самостоятельно взаимодействовать с полем, так как имеют прочную физико-химическую связь с молекулами древесинного вещества. Поэтому є и tg в при влажности древесины до 28—30%

определяются диэлектрическими параметрами древесинного вещества со связанной влагой.

При влажности выше точки насыщения волокон свободная влага, заполняющая макрокапилляры древесины, содержит небольшое количество органических и минеральных веществ. Измерения диэлектрических свойств этой влаги, полученной из еловой свежесрубленной древесины, на частоте 2375 МГц, показали, что они практически не отличаются от свойств чистой воды. Свободная влага имеет чисто механическую связь с древесиной, и молекулы ее взаимодействуют с полем СВЧ независимо от древесинного вещества и связанной с ним влаги. Поэтому изменение є и ід з древесины влажностью выше предела гигроскопичности определяется в основном диэлектрическими параметрами свободной воды и ее процентным содержанием.

Как показывает анализ клеточной структуры еловой древесины, размеры трахеид, а также толщина их оболочек в радиальном и тангентальном направлениях отличаются незначительно [4]. Предполагая, что диэлектрические свойства ели в радиальном и тангентальном направлениях одинаковы, при расчетах их можно принимать одинаковыми, т. е.

$$\begin{split} \varepsilon_R' &= \varepsilon_T' = \varepsilon_{RT}'; \\ \operatorname{tg} \delta_R &= \operatorname{tg} \delta_T = \operatorname{tg} \delta_{RT}. \end{split}$$

Экспериментально найденные значения диэлектрической проницае-мости и тангенса угла потерь еловой древесины в широком диапазоне влажности и температуры рекомендуются для использования при энергетических расчетах технологических процессов, связанных с обработкой древесины и древесных материалов в СВЧ поле.

ЛИТЕРАТУРА

[1]. Брандт А. А. Исследование диэлектриков на сверхвысоких частотах. М., Физматгиз, 1963. [2]. Лебедев И. В. Техника и приборы СВЧ. Т. 1. М., «Высшая школа», 1970. [3]. Мануйлов Н. А., Торговников Г. И. О диэлектрических свойствах влажной древесины на сверхвысоких частотах. — Труды ЦНИИМЭ, сб. 140. Химки, 1974, с. 131—139. [4]. Перелыгин Л. М. Строение древесины. М., изд. АН СССР, 1954, с. 119. [5]. Хиппель А. Р. Диэлектрики и их применение. М., Госэнергоиздат, 1959, с. 72.

Поступила 17 марта 1976 г.

1977

ХИМИЧЕСКАЯ ПЕРЕРАБОТКА ДРЕВЕСИНЫ

УДК 634.0.813.11

ИССЛЕДОВАНИЕ ЛИГНИНОВ, ВЫДЕЛЕННЫХ ИЗ СУЛЬФАТНОГО ЩЕЛОКА И НЕБЕЛЕНОЙ СУЛЬФАТНОЙ ЦЕЛЛЮЛОЗЫ

В. А. ДЕМИН, Г. И. ПОПОВА, Б. Д. БОГОМОЛОВ, В. Д. ДАВЫДОВ

Архангельский лесотехнический институт, Коми филиал АН СССР

Показано, что лигнин, выделенный из небеленой целлюлозы, более конденсирован, более окислен и содержит меньше метоксилов и фенольных гидроксильных групп, чем сульфатный лигнин, выделенный из щелока.

Для осуществления процесса отбелки целлюлозы большое значение имеют свойства лигнина, не извлеченного из целлюлозы при ее варке, так как остаточный лигнин — основное красящее соединение небеленой сульфатной целлюлозы.

Задача настоящего исследования состояла в извлечении остаточного лигнина сульфатной целлюлозы и сравнении его функционального состава, молекулярно-массового распределения, УФ- и ИК-спектров с характеристиками сульфатного лигнина, выделенного из черного шелока.

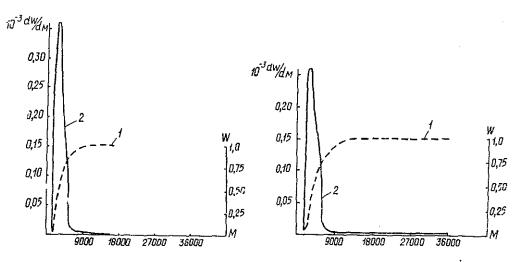
Остаточный лигнин (ЦЛ) выделен из небеленой сульфатной целлюлозы [1], сульфатный лигнин из щелока (СЛ) получен подкислением его серной кислотой [2] и дополнительно очищен переосаждением из диоксана в эфир. Характеристики препаратов приведены в табл. 1.

Таблица 1

	Содержание в лигнине							
Препарат лигнина	OCH ₃ ,	-CO, мг-экв/г	-СООН, мг-экв/г	ОН _{фен,} мг-экв/г	серы, %	M W		
Сульфатный лигнин (СЛ)	14,90	0,96	0,88	3,97	2,48	3938,8		
Диоксанлигнин (ЦЛ)	10,25	2,48	0,95	2,99	1,30	5102,1		

Из данных таблицы видно, что лигнин, перешедший в раствор во время варки, содержит значительно больше метоксильных групп и фенольных гидроксилов, чем остаточный лигнин. Низкое содержание метоксильных групп в остаточном лигнине может быть вызвано более сильным деметилированием этого лигнина, а также растворением при варке более метоксилированных фрагментов лигнина.

Реакции деметилирования приводят к увеличению содержания фенольных гидроксильных групп в лигнине, а поскольку ЦЛ содержит значительно меньше фенольных гидроксилов, чем СЛ, то, вероятно, более низкое содержание в ЦЛ метоксильных групп связано с фракционированием лигнина при варке целлюлозы: в раствор переходят более метоксилированные фрагменты, а в ЦЛ накапливаются менее метоксилированные фракции лигнина.



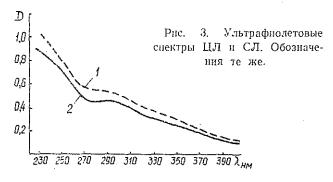

Рис. 1. Содержание фракций лигинна, выделенного из сульфатного щелока. 1 — ЦЛ; 2 — СЛ.

Рис. 2. Содержание фракций лигинна, выделенного из небеленой сульфатной целлюлозы. Обозначения те же.

Известно, что основным фактором, способствующим растворению лигнина при варке целлюлозы, является увеличение гидрофильности и уменьшение размеров макромолекулы лигнина. Реакции деструкции лигнина, протекающие с разрывом эфирных и углерод-углеродных связей, приводят к расщеплению его макромолекулы и возникновению новых фенольных гидроксилов. Этим обусловлено значительно более высокое содержание фенольных гидроксильных групп в СЛ, чем в ЦЛ. При сравнении ЦЛ и диоксанлигнина (ДЛ), выделенного из хвойной древесины (содержание в нем $OH_{\Phi^{en}}$ 2,39 мг-экв/г [3]), можно отметить, что ЦЛ подвергался реакциям деструкции в меньшей степени, чем лигнин, перешедший в раствор в процессе варки.

Данные химического анализа подтверждаются исследованиями молекулярной массы (ММ) и молекулярно-массового распределения (ММР) этих лигнинов. На рис. 1 и 2 приведены интегральные и дифференциальные кривые ММР СЛ и ЦЛ, которые показывают, что ЦЛ содержит более высокомолекулярные фракции: фракции с молекулярной массой 18 000 — 36 000, отсутствующие в СЛ.

Однако, сравнивая ЦЛ и диоксанлигнин [3], видим, что диоксанлигнин, выделенный из древесины и не подвергавшийся варке, еще

7 «Лесной журиал» № 1

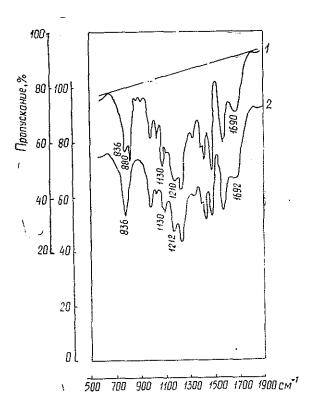


Рис. 4. Инфракрасные спектры ЦЛ и СЛ. $1-\text{СЛ}:\ 2-\text{ЦЛ}.$

более высокомолекулярен: содержит фракции с ММ более 40 000, причем фракции с ММ 18 000—40 000 в этом лигнине значительно больше.

Среднемассовая ММ сравниваемых лигнинов также различна: ДЛ, выделенный из древесины, имеет ММ больше, чем ЦЛ, а среднемассовая ММ ЦЛ больше ММ СЛ.

Ультрафиолетовые спектры исследуемых лигнинов, представленные на рис. 3, сходны. Площадка на спектрах при 274—295 нм характерна для лигнинов и обусловлена их ароматической структурой.

При сравнении инфракрасных спектров ЦЛ и СЛ (рис. 4) видны

различия в области 800-960 см-1.

Согласно данным [4], поглощение в этой области обусловлено внеплоскостными деформационными колебаниями С—Н связи ароматического ядра с различной степенью и характером замещения. Вследствие

Таблица 2

Относитель- ная оптиче- ская плотность.	Содержанне функци нальных групп преп ратов			
см-1	СЛ	цл		
1130 1210 1690	1,252 1,549 0,631	1,007 1,455 0,814		

полимерного характера лигнина и неоднородности его связей точное отнесение пиков на ИК-спектре СЛ в области $800-960~\rm cm^{-1}$ затруднительно. Сравнение величин относительной оптической плотности (ВООП) ЦЛ и СЛ [4, 5] с использованием в качестве стандарта Na_2WO_4 показывает отличия препаратов лигинна по содержанию функциональных групп (табл 2).

В областях, характеризуемых содержанием метоксильных групп (1130 см $^{-1}$) и фенольных гидроксилов (1210 см $^{-1}$), СЛ имеет большее значение ВООП. ЦЛ имеет большее поглощение при 1690 см $^{-1}$, что свидетельствует о большом содержании карбонильных и карбоксильных групп в этом препарате.

Данные ИК-спектроскопии находятся в согласии с аналитическими

данными табл. 1.

ЛИТЕРАТУРА

[1]. Богомолов Б. Д., Попова Г. И. Выделение и характеристика дио-ксанлигнина сосны. — В сб.: Современные методы исследования в химии лигнина. Архангельск, 1970, с. 153—154. [2]. Богомолов Б. Д., Соколова А. А. Побочные продукты сульфат-целлюлозного производства. М., Гослесбумиздат, 1962, с. 81. [3]. Богомолов Б. Д., Попова Г. И., Соколов О. М., Кочергина Г. Г. Обизменении молекулярного веса диоксанлигнина сосны при щелочных варках.—ИВУЗ, «Лесной журнал», 1974, № 1, с. 104. [4]. Кавамура И., Хугуши Т.—В сб.: Химия и биохимия лигнина, целлюлозы и гемицеллюлоз. М., «Лесная промышленность», 1969, с. 196. [5]. Карклинь В. Б., Эриньш П. П. Инфракрасная спектроскопия древесины и ее основных компонентов. 1. Количественное сравнение инфракрасных спектров в исследовании древесины и лигнина. — «Химия древесины», 7. Рига, 1971, с. 83.

Поступила 24 ноября 1975 г.

УДК 676.164.022.612

СПОСОБ ПРОПИТКИ ЩЕПЫ ПРИ СУЛЬФАТНОЙ ВАРКЕ

И. М. ГОРЯЧЕВА, И. А. КАЗАКОВ, Г. К. УТКИН, С. И. РЕМПЕЛЬ, М. Б. ФРЕЙДКИН

Уральский лесотехнический институт, Сыктывкарский ЛПК

Показано, что обработка щепы низкочастотными колебаниями (частота 50 Γ ц и амплитуда 0,8—1,0 мм) ускоряет процесс пропитки белым щелоком и повышает общий выхол целлюлозы на 4—7%.

Скорость и полнота пропитки щепы варочным щелоком влияют на свойства и выход целлюлозы, на расход активной щелочи и продолжительность варочного процесса. Известно несколько способов интенсификации пропитки щепы: пропарка, вакуумирование, создание в варочных котлах переменного гидравлического давления и др. Эти способы основаны на удалении из щепы воздуха, оказывающего встречное давление варочному щелоку и снижающего скорость пропитки [2].

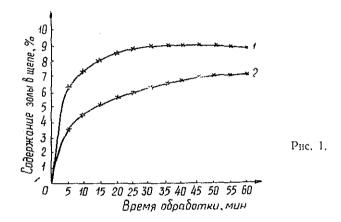
При сульфатной варке применение этих способов ограничено, так как они увеличивают время оборота варочного котла и снижают про-

изводительность [1, 4].

Проводились исследования по интенсификации пропитки щепы с помощью ультразвуковых колебаний и электрических разрядов в жидкости [6, 7]. Однако электролиты в качестве среды при обработке щепы в электрогидравлической установке резко снижают силу ударной волны, а ультразвуковые установки требуют больших затрат электроэнергии и специальной подготовки обслуживающего персонала.

Использование низкочастотных механических колебаний для интенсификации пропитки щепы белым щелоком при сульфатной варке значительно проще, дешевле и может быть осуществлено вне варочно-

го котла. В этих целях и была проведена настоящая работа.


Отбирали средине пробы щены сосны Сыктывкарского ЛПК размером 15×25 мм,

толщиной 3-4 мм.

Обработку щепы проводили низкочастотными колебаниями (НЧК), полученными при помощи электромагнитного вибратора с частотой 50 Гц и амплитудой 0.8 — 1,0 мм, при температуре 60°С в среде белого щелока. Количество белого щелока для пропитки щепы было взято из расчета расхода активной щелочи 15,0% Na₂O от массы абс. сухой щепы, с сульфидностью 30% и гидромодулем 1:5.

Полноту пропитки щены определяли по увеличению зольности, которую рассчитывали по методике [5] с точностью до 0,01% к массе абс. сухой древесины. Расхождения между параллельными определениями не превышали 0,01%.

Результаты опытов, показывающие изменение содержания золы в пропитанной щене с обработкой (1) и без обработки НЧК (2), представлены на рис. 1. где видно, что обработка НЧК ускоряет процесс пропитки.

Скорость пропитки в основном определяется скоростью диффузии [3] и смачиваемостью раствором стенок капилляров. Низкочастотные колебиния усиливают эти процессы и способствуют вытеснению воздуха из щены. При пятиминутной пропитке щены с обработкой разница в содержании золы в щене по сравнению с контрольным опытом составила 68,8%. С увеличением времени пропитки до 45—60 мин различие снижается до 28,0%, это указывает на то, что наибольший эффект наблюдается за первые 15 мин.

Химический состав белого щелока в процессе пропитки щепы изменяется в сторону снижения концентрации его активных компонентов, что свидетельствует о наличии адсорбционных и, возможно, химических процессов.

Данные об изменении химического состава белого щелока после пропитки щепы

приведены в табл. 1 (с применением НЧК) и табл. 2 (без применения НЧК). В щелоке определяли содержание общей, эффективной щелочи и сульфида натрия (серинстая щелочь) и рассчитывали содержание активной щелочи и степень сульфидности.

Сравнивая результаты (табл. 1 и 2), видим, что концентрации общей, эффективной и сернистой щелочей, а следовательно, и активной щелочи в щелоке, снижаются при пропитке щепы с обработкой НЧК. Так, концентрация общей щелочи при одинаковом времени нахождения щепы в белом щелоке при обработке НЧК снижается против контрольных опытов на 5,5-8,0%.

При рассмотрении изменения содержания в белом щелоке основных компонентов (NaOH и Na₂S) можно отметить, что концентрация эффективной щелочи снижается значительно быстрее, чем концентрация сульфида натрия и поэтому увеличивается степень сульфидности. В результате воздействия НЧК, снижение концентрации NaOH протекает быстрее. За первые 10 мин эта разница составила 6,0%, а при дальнейшем увеличении длительности процесса достигает 15,0—16,5%.

Для изучения влияния пропитки щепы с применением НЧК на по казатели целлюлозы в лабораторных условиях были проведены суль-

Увеличе.	фидиости, %	10,32 10,32 10,32 10,58 10,58 10,64 11,87 13,61 13,61 13,61 13,61 13,61 13,61 13,61 13,61 13,61 18,39 18,39	3 1 2	Увеличе-	ине сульфил- ности, %	122 125 125 125 125 125 125 125 125 125
Сульфил-	ность, %				Сульфи1- 110сть, %	33,78 33,78 33,78 33,78 33,78 33,78 33,78 34,04 11,48
чи, %	активной	29.89 14.12 14.12 23.76 23.76 25.92 25.92 26.83 28.48 28.48 28.48		NaOH,	активной	10,53 10,53 11,053 11,053 12,03 13,06 13,74 14,28 14,28
рации ще зо	серинстой	0.60 3,00 3,00 1,34 1,31 15,85 15,86 15,86 15,34 15,34 15,34 15,34		эции едкого телочи	серинстой	0,34 0,34 0,04 0,04 1,46 1,80 1,46 1,80 1,46 1,31 1,31 3,17
ине коппепт	эффектив- пой	11.55 16.53 17.78 27.78 20.82 30.82 30.82		не копцентр: 	эффектив- пой	6,11 10,03 11,03 12,03 14,04 14,04 14,08 15,56 16,56 16,88 16,98
Спиже	общей	4,04 4,04 11,88 11,88 11,88 11,56 11,56 11,56 11,56 11,56 11,56		Спижен	общей	2,77 2,77 5,65 6,16 6,16 7,20 8,19 8,78 9,18 10,38
5	активной	27,72 27,73		в щелочи	активной	38,73 36,72 36,72 37,72 37,10 37,10 33,68 33,68 33,63 33,63 33,63 33,63 33,63 33,63 33,63
я желочи, г	серинстой	111.00.00.00.00.00.00.00.00.00.00.00.00.		NaOH, r/л,	серинстой	11,67 11,66 11,56 11,56 11,56 11,34 11,34 11,36 11,36 11,36
Совщентраци	эффектив- ной	22222222222222222222222222222222222222		ация едкого	эффектив- ной	22.30.30.30.30.30.30.30.30.30.30.30.30.30.
-	общей	33.31 37.72 35.66 33.56 33.56 33.66 33.66 33.66 32.80 32.80		Концентр	общей	34,522 34,522 34,523 35,596 35,596 35,596 35,596 35,596 36
	Cvardun-	Концентрация шелочи, г/л Синжение копцентрации ще зочи, % Сульфид- эффектив- серимстой активной общей эффектив- серимстой активной	Концентрация шелочи, г.л Спижелие коппентрации ще зочи, з з дорожетив не супловия побщей пой пой пой пой пой пой пой пой пой по	Ковщентрация шелочи, г.л Спижение концентрации ще зочи, з ной ной Сульфиил насточи, г.л Сульфиил насточи, з ной ной Сульфиил насточи, з	Концентрация шелочи, г.л Спижелие концентрации ще зочи, з в дерфектив сершистой активной общей ной пой пой пой пой пой пой пой пой пой п	Ковщентрация шелочи, г.л Спижение концентрации шелочи, г.л Спижение концентрации шелочи, г.л Сульфиц- вредительной вктивной вктивной побщей вфектив- пой побщей побще

фатные варки, результаты которых приведены в табл. 3. Пропитку щепы осуществляли в течение 20 мин по режиму: заварка — 2,5 ч, варка — 1,5 ч, конечная температура — 170°С и гидромодуль 1:5.

Таблица 3

· ·	Выхо	Жесткость			
Вил пеллюлоз из пропитанной пцепы	общий	сортиро- ванной	ренной непрова-	целлюлозы, число Каппа	
С обработкой НЧК	45,6	45,34	0,26	25,7	
Без обработки НЧК	42,5	41,0	1,5	26,4	

После пропитки с обработкой НЧК часть щелока отобрали и варку проводили с меньшим расходом активной щелочи, равным 13,5% от

массы абс. сухой древесины.

Из табл. З видно, что пропитка щепы с обработкой НЧК позволяег в 5—7 раз снизить непровар, уменьшить расход активной щелочи на 8,0% и получить при данных условиях пропитки и варки целлюлозу примерно одинаковой жесткости.

ЛИТЕРАТУРА

[1]. Материалы совещания по внедрению переменного гидравлического давления 11. Материалы совещания по внедрению переменного гидравлического давления при варке сульфитной целлюлозы. М., ЦБТИ, 1957, с. 70. [2]. Непенин Н. Н. Технология целлюлозы. Т. 1. М., «Леская промышленность», 1976, с. 372. [3]. Непенин Ю. Н. Технология целлюлозы. Т. И. М., «Леская промышленность», 1963, с. 72. [4]. Николаев А. С. Хохлов К. М. — «Бумажная промышленность», 1955, № 1, с. 8—10. [5]. Оболенская А. В. и др. Практические работы по химии древесины и целлюлозы. М., «Леская промышленность», 1965, с. 58. [6]. Сперанский В. М., Аренков А. Б. Звукохимия и целлюлоза. Гослесбумиздат, 1961, с. 24—26. [7]. Трофимова Н. Б. Пробой диэлектриков и полупроводников. М.—Л., «Энергия», 1974, с. 219—224.

Поступила 12 октября 1976 г.

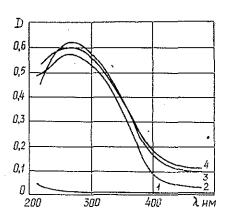
УДК 546.655: 547.455.526/.623

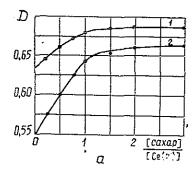
ОПРЕДЕЛЕНИЕ СОСТАВА И УСТОЙЧИВОСТИ КОМПЛЕКСА Се (IV) С ГЛЮКОЗОЙ И КСИЛОЗОЙ

В. И. КРУПЕНСКИЙ, И. И. КОРОЛЬКОВ, Т. В. ДОЛГАЯ

Ленинградская лесотехническая академия Ухтинский индустриальный институт

Определены состав и устойчивость комплексов ксилозы и глюкозы с нонами Ce(IV) в кислой среде.


При исследовании кинетики окисления ксилозы сульфатом перич (IV) в кислой среде нами было высказано предположение об образованни комплекса, распад которого мог определять кинетику реакции [4]. Аналогичный вывод был сделан в работе [5], где рассмотрено окисление церием (IV) глюкозы.


Для подтверждения предполагаемого механизма окисления изучали спектрофотометрически комплексообразование в растворах Ce (IV), содержащих глюкозу и ксилозу. Спектры поглощения в ультрафиолетовой и видимой области снимали на приборе «Specord UV-VIS», величину рН контролировали на потенциометре рН-340. Использовались сахара марки «ч», $Ce(SO_4)_2 \cdot 4H_2O$ «ч. д. а».

Добавление ксилозы или глюкозы к раствору сульфата церия (IV) немедленно приводило к увеличению оптической плотности и значительным изменениям в спектре поглощения (рис. 1), что свидетельствовало о комплексообразовании. Оптическая плогность достигает максимума спустя 4-5 мин после смешения компонентов, а затем несколько уменьшается, что связано, вероятно, с внутрикомплексным окислением моносахарида и восстановлением Ce(IV).

Состав комплексов определяли методами молярных отношений и Жоба — Остромысленского [2], оптические плотности изомолярных растворов — прибором $\Phi \ni K-56M$ с ртутной лампой СВД-120-A при постоянной поиной силе $\mu=1,0$, которую создавали введением (NH₄)₂SO₄. Полученный перегиб на кривой насыщения, а также максимум поглощения на диаграммах изомолярных серий при соотношении компонентов

Рис. 1. Спектры поглощения. I — ксилоза, 2,5 · 10⁻⁴ M; 2 — $Ce(SO_4)_2$, $[Ce(IV)] = 2,5 · 10^{-4}$ M; 3 — [Ce(IV)] : [ксилоза] = 1 : 1, $[Ce(IV)] = 2,5 · 10^{-4}$ M; 4 — [Ce(IV)] : [глюкоза] = 1 : 1, $[Ce(IV)] = 2,5 · 10^{-4}$ M; pH = 1,5; $t = 20 \pm 1,0^{\circ}$ C; l = 1 см.

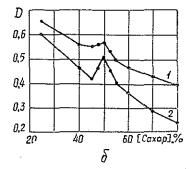


Рис. 2. Зависимость оптической плотности раствора от соотношения [caxap]: [Ce (IV)].

 α — кривые насыщения [Ce (IV)] = $5 \cdot 10^{-4}$ М; δ — диаграммы изомолярных серий [Ce (IV)] + [caxap] = $5 \cdot 10^{-4}$ М; I — ксилоза: 2 — глюкоза. μ = 0,1 (H₂SO₄); pH = 1,5; t = $25 \pm 1.0^{\circ}$ C; λ = 400 нм; t = 3 см.

1:1 свидетельствовал об образовании монокомплекса между ноном Ce(IV) и углеводом (рис. $2, a, \delta$). Выяснилось также, что при добавлении избытка сахара к раствору $Ce(SO_4)_2$ рН практически не изменяется. Опыты с точными навесками $Ce(SO_4)_2$ показали, что при полном переведении нонов Ce(IV) в комплекс при pH=0,8-1,5 из одной молекулы моносахарида выделяется не более 0,1 нона H_3O^+ . поэтому наиболее вероятна координация нона Ce^{4+} не по кислым гидроксилам при C_1 и C_2 , легко отщепляющим H^+ , а по полуацетальному кислороду моносахарида. Тому подтверждением является факт, что в равновесной смеси у ксилозы и глюкозы содержание α -аномера, имеющего OH-группы при C_1 и C_2 в цис-положении, составляет приблизительно 35% [3], отсюда в случае комплексообразования с участием этих гидроксилов максимум на диаграммах изомольных серий приходился бы на раствор с мольной долей катнона около 0,25, а не 0,5, как в действительности.

Расчет констант нестойкости комплексов проводили по кривым насыщения [6], а также методом А. К. Бабко [1]. В первом случае концентрацию комплекса находили по формуле

[комплекс] =
$$\frac{D - \epsilon_{\text{Ce (IV)}} iC_{\text{Ce (IV)}}}{I(\epsilon_{\text{компл}} - \epsilon_{\text{Ce (IV)}})}$$
,

причем $\varepsilon_{\text{компл}}$ и $\varepsilon_{\text{Ce (IV)}}$ определяли по данным рис. 2, a.

Найденную величину [комплекс] учитывали, рассчитывая равновесные концентрации сахара и катиона, а также константы нестойкости:

$$\begin{split} [\mathrm{caxap}] &= C_{\mathrm{cax}} - [\mathrm{комплекс}]; \\ [\mathrm{Ce}\,(\mathrm{IV})] &= C_{\mathrm{Ce}\,(\mathrm{IV})} - [\mathrm{комплекс}]; \\ K_{\mathrm{Hecr}} &= \frac{[\mathrm{Ce}\,(\mathrm{IV})]\,[\mathrm{caxap}]}{[\mathrm{комплекс}]} \end{split}$$

 $(C_{\mathsf{cax}}$ и $C_{\mathsf{Ce}\;(\mathsf{IV})}$ — исходные концентрации).

Таблица 1

Сахар ^х нм	С _{сах} , мол/л • 10°	D	[Комплекс] мол/л - 101		[Сахар] мол/л · 10 ⁴	10 ⁵ • К _{нест}
Глюкоза 400 $\epsilon_{Ce(IV)} = 367$ $\epsilon_{KOMIJ} = 400$	1,25	0,576	1,14	3,89	0,11	3,72
	2,5	0,600	2,28	2,72	0,22	2,63
	3,75	0,623	3,33	1,67	0,42	2,11
	5,0	0,642	4,20	0,80	0,80	1,53
	7,5	0,653	4,70	0,30	2,80	1,79
$\epsilon_{\text{Ce(IV)}} = 167$ $\epsilon_{\text{компл}} = 213$	1,25	0,265	1,16	3,84	0,09	2,99
	2,5	0,282	2,28	2,72	0,22	2,63
	3,75	0,295	3,26	1,74	0,49	2,66
	5,0	0,306	4,05	0,95	0,95	2,22
	7,5	0,314	4,65	0,35	2,85	2,15
Ксилоза 400 $\epsilon_{Ce(IV)} = 423$ $\epsilon_{KOMIJJ} = 457$	1,25	0,646	1,03	3,97	0,22	8,47
	2,5	0,656	2,10	2,90	0,40	5,54
	3,75	0,666	3,09	1,91	0,66	4,08
	5,0	0,676	4,06	0,94	0,94	2,18
	7,5	0,680	4,45	0,55	3,05	3,90
440 $\varepsilon_{\text{Ce(IV)}} = 227$ $\varepsilon_{\text{компл}} = 247$	1,25	0,346	1,00	4,00	0,25	10,00
	2,5	0,352	2,00	3,00	0,50	7,50
	3,75	0,358	3,00	2,00	0,75	5,00
	5,0	0,364	4,00	1,00	1,00	2,50
	7,5	0,367	4,50	0,50	3,00	3,33

Примечание. $\mu=0.1\,({\rm H_2SO_4});\;t=25\pm1.0^{\circ}{\rm C};\;{\rm pH}=1.5;\;C_{\rm Ce~(IV)}=5\cdot10^{-4}$ мол/л; I=3 ćм. Средняя $K_{\rm Hect}$: глюкозы — $2.5\cdot10^{-5};\;$ ксилозы — $4.8\cdot10^{-5}.\;$

Таблица 2

Сахар ^Х нм	Скомпон - 104	D	Номер опыта	Δ	a	10° - K _{Hecr}
Глюкоза	1.00	0,810	1.0	0.167	0,333	1,67
315	1,00 0,44 0,25	0,300 0,300 0,1 40	1,2 2,3 1,3	0,167 0,152 0,309	0,562 0,309	3,18 1,37
364	1,00 0,44 0,25	0,435 0,160 0,075	1,2 2,3 1,3	0,175 0,175 0,310	0,350 0,547 0,310	1,88 2,90 1,40
Ксилоза			- 0			1
315	1,00 0,44 0 ,25	0,750 0,260 0,120	1,2 2,3 1,3	0,220 0,196 0,360	0,440 0,610 0,360	3,46 4,24 2,03
364	1,00 0,44 0,25	0,425 0,145 0,065	1,2 2,3 1,3	0,233 0,207 0,390	0,466 0,630 0,390	4,07 4,75 2,50

 Π римечапие. $\mu=0.1$ (H_2SO_4); $t=25\pm1.0^{\circ}C$; pH=1.5; t=3 см. Средняя $K_{\rm нест}$: глюкозы — 1.96.10 $^{-5}$; ксилозы — 3.46 \cdot 10 $^{-5}$.

Пользуясь методом А. Қ. Бабко, для каждой длины волны определяли три значения $K_{\rm necr}$, из которых находили среднюю величину. Расчет констант комплексов Ce(IV) с глюкозой и ксилозой приведен в табл. 1 и 2.

Рассчитанные двумя методами константы нестойкости комплексов хорошо согласуются. Для глюкозы среднее значение константы составляет $2,2\cdot 10^{-5}$, для ксилозы — $4,1\cdot 10^{-5}$. Несколько большую прочность комплекса с глюкозой можно объяснить дополнительным связыванием катиона гидроксилом при C_6 , которого у ксилозы нет:

ЛИТЕРАТУРА

[1]. Бабко А. К. Физико-химический анализ комплексных соединений в растворах. Кнев, изд-во АН УССР, 1955, с. 119. [2]. Булатов М. И., Калинкин И. П. Практическое руководство по фотоколориметрическим и спектрофстометрическим методам анализа. Л., «Химия», 1972. [3]. Илиел Э., Аллинжер Н., Энжиал С., моррисон Г. Конформационный анализ. М., «Мир», 1969, с. 480. [4]. Крупенский В. И., Корольков И. И., Микуш Н. П. Окисление ксилозы и фурфурола нонами Се(IV).— ИВУЗ, «Лесной журнал», 1975, № 4, с. 163. [5]. Курлянкина В. И., Сарана Н. В., Козьмина О. П. Окисление гидроксилсодержащих соединений церием (IV). — ЖОХ, 41, 1971, № 6, с. 1315. [6]. Малинина Е. А., Богданович Н. Г., Печурова Н. И., Мартыненко Л. И. Исследование процессов взаимодействия в системе Се^{IV} — SO ²⁻ — N(CH₂COOH)₃, — ЖНХ, 14, 1969, № 9.

Поступила 26 февраля 1976 г.

УДК 668.473

О ПОЛНОТЕ ИСПОЛЬЗОВАНИЯ СМОЛЯНЫХ КИСЛОТ ПРИ РЕКТИФИКАЦИИ ТАЛЛОВОГО МАСЛА*

А. А. МАРИЕВ, Б. С. ФИЛИППОВ

Архангельский лесотехнический институт

Изучено распределение смоляных кислот между продуктами ректификации таллового масла при получении талловой канифоли, для повышения выхода и улучшения качества которой предлагается заменить в колоннах насыпную насадку на регулярную.

Талловая канифоль — один из наиболее важных продуктов, получаемых при переработке таллового масла. Групповой состав ее характеризуется относительным постоянством (она содержит 10—12% жирных и 80—84% смоляных кислот, 6—7% неомыляемых веществ).

^{*} Работа выполнена под руководством докт. техн. наук, проф. Б. Д. Богомолова.

Рис. 1. Изменение выхода канифоли на установке ректификации таллового масла Соломбальского ЦБК.

1 — по месяцам; 2 — по неделям.

Но, как показывают производственные данные, выход канифоли из таллового масла может быть различным. Изменение выхода талловой канифоли в течение года на установке ректификации таллового масла Соломбальского ЦБК показано на рис. 1. Среднемесячные выходы канифоли 20,2—25,6%, средненедельные 19,3—32,0%, при этом канифолью отбиралось не более 65—70% смоляных кислот таллового масла. Значительные колебания выхода талловой канифоли затрудняют планирование ее выработки и контроль за полнотой использования сырья.

В целях выявления факторов, влияющих на изменение выхода талловой канифоли, был проведен анализ работы установки ректификации таллового масла Соломбальского ЦБК.

Часть технологической схемы трехколонной установки ректификации таллового масла, включающая стадии отделения пека и получения канифоли, показана на рис. 2. Основные режимные показатели работы оборудования, указанного на схеме, приведены в табл. 1.

После сушки под вакуумом исходное талловое масло поступает в отгониую ваниу. Нелетучие компоненты таллового масла вместе с продуктами деструкции смоляных

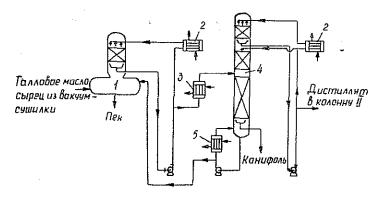


Рис. 2. Технологическая схема получения талловой канифоли на Соломбальском ЦБК.

I — отгонная ванна; 2 — холодильшіки; 3 — подогреватель; 4 — ректификационная колонна-4; 5 — испаритель.

Таблина 1

	Обору	Оборудование			
Технологические режимные показатели	Отгонная ванна	Колонна-1			
Давление, мм рт. ст.: в верхней части кубовой " Температура, °С продукта на входе в аппарат в середине аппарата в кубовой части паров после испарителя Скорость подачи продукта на ороше-	1—2 3—6 200—240 — 258—263	1—2 15—18 246—264 228—240 278—288 265—272			
ние (флегму), м ³ /ч Скорость движения продукта в кубо- вой циркуляции, м ³ /ч	_	0,9—1,4 25—35			

и жирных кислот отбираются из отгонной ванны в виде пека. Дистиллят отгонной ванны разделяется в ректификационной колонне-1 на талловую канифоль и дистиллят с пизким содержанием смоляных кислот, направляемый на дальнейшую ректификацию для получения талловых жирных кислот.

Для процессов, протекающих по данной схеме, уравнения общего и частного матернального балансов по смоляным кислотам можно записать следующим образом:

$$G_{\rm TM} = G_{\rm II} + G_{\rm K} + G_{\rm J}; \tag{1}$$

$$0.01 G_{TM} X_{TM} = 0.01 (G_{TM} X_{TM} + G_{TM} X_{K} + G_{TM} X_{M}), \tag{2}$$

гле

 $G_{\mathrm{TM}},\ G_{\mathrm{R}},\ G_{\mathrm{R}}$ — приход таллового масла в отгонную ванну, расход пека, канифоли и дистиллята колонны-1, кг/с. $X_{\mathrm{TM}},\ X_{\mathrm{R}},\ X_{\mathrm{R}}$ — содержание смоляных кислот в талловом масле, суммарное содержание свободных и деструктированных смоляных кислот в пеке, содержание смоляных кислот в канифоли и дистилляте колонны-1, %.

Общие потери таллового масла на однотипной установке Котласского ЦБК составляют 0,26% к приходу масла в отгонную ванну [2] и в расчетах ими можно препебречь.

Анализируя работу установки в течение 140 сут, фиксировали изменение прихода таллового масла-сырца, поступающего в отгонную ванну, а также расходов получаемых при этом пека и канифоли. Расход дистиллята рассчитывали по уравнению общего материального баланса (1). Одновременио наблюдали за изменением содержания смоляных кислот в талловом масле, поступающем в отгонную ганиу, в канифоли и в дистилляте колонны-1.

Суммарное содержание свободных и деструктированных смоляных кислот в пеке рассчитывали по уравнению частного материального баланса по смоляным кислотам (2).

Расчеты показали, что при заданной доверительной вероятности 0,95 и точности оценки наблюдаемых значений показателей $\pm 5\%$ относительных достоверный результат является средней величиной пяти единичных наблюдений [3], поэтому результаты суточных наблюдений усредняли до средних показателей за неделю.

Из табл. 2 видно, что средние значения показателей близки к данным баланса сырья и продуктов установки ректификации таллового масла Котласского ЦБК, приведенным в работе [2].

Значительная величина суммарного содержания свободных и деструктированных омоляных кислот в пеке — $37.6\pm8.9\%$ — привлекает внимание. Сопоставление аналогичного показателя, рассчитанного по данным баланса установки Котласского ЦБК и равного 26.8%, с содержанием свободных смоляных жислот в пеке 9-14%, найденных аналитически авторами работ [1], [2], позволяет заключить, что около половины смоляных жислот, теряемых с пеком, расходуется в виде продуктов их деструкции.

Таблица 2

	1	1	Данны	е баланса на	СЦБК	
Показатели балонса	10	Данные боланса на КЦБК	Срелнее	Среднеквадратическое отклонение		
	Едлиния	[2]	значение	абсолютное	относитель- ное	
Контролируемые						
Приход таллового масла в отгонную ванну, $G_{\rm TM}$ Расход пека, $G_{\rm R}$, канифоли, $G_{\rm K}$ Содержание смоляных кислот: в талловом масле, $X_{\rm TM}$ в канифоли, $X_{\rm K}$ в дистилляте колонны-1, $X_{\rm A}$ Расчетные	7/4 * %	1,910 0,530 0,461* 36,5 81,6 16,1	1,670 0,435 0,419 37,1 80,3 15,6	0,180 0,060 0,094 1,9 1,9 3,8	10,8 13,8 24,4 5,1 2,4 24,3	
Расход дистиллята колонны-1, $G_{\rm L}$ Суммарное содержание	 T/़प 	0,743	0,810	0,140	17,3	
свободных и деструктированных смоляных кислот в пеке, $X_{\rm n}$	%	26,8**	37,6	8,9	23,7	

* На КЦБК отбирали из кубовой циркуляции колонны-1 промежуточную канифольную фракцию с содержанием смоляных кислот 48,7% в количестве 0,123 т/ч; ** расчет по данным работы [2].

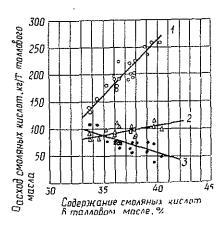
Из рассмотренных параметров наиболее стабильно содержание смоляных кислот в канифоли, являющейся товарным продуктом, качество которого регламентируется. Относительное среднеквадратичное отклонение этого показателя составляет $\pm 2,4\,\%$. Среди расходных показателей наибольшим было изменение часового расхода канифоли (относительное среднеквадратичное отклонение $\pm 24,4\,\%$).

В период обследования режимные показатели эксплуатации отгонной ванны и колонны-1 изменялись в сравнительно узких пределах (табл. 1). Выход канифоли, в свою очередь, изменялся в зависимости от количества смоляных кислот, поступавших с сырьем, и в связи с различным их распределением между пеком, дистиллятом колонны-1 и талловой канифолью.

Для более удобного рассмотрения влияния указанных факторов на выход канифоли уравнения материального баланса (1) и (2) представим в следующем виде:

$$100 = B_{\pi} + B_{\kappa} + B_{\alpha}; \tag{1a}$$

$$100X_{\text{TM}} = B_{\text{n}}X_{\text{n}} + B_{\text{K}}X_{\text{K}} + B_{\text{A}}X_{\text{A}}; \tag{2a}$$


где $B_{\rm n}$, $B_{\rm k}$, $B_{\rm g}$ — выходы пека, канифоли и дистиллята колонны-1, % к талловому маслу.

Уравнение (2a) характеризует распределение смоляных кислот, поступающих с сырьем, по потокам получаемых продуктов. Фактически установленное распределение смоляных кислот по указанным потокам (рис. 3) показывает, что с увеличением содержания смоляных кислот в сырье расход их с пеком несколько возрастает, а с дистиллятом колонны-1 снижается. Вследствие этого в интервале рассмотренных рабочих концентраций смоляных кислот в талловом масле суммарный расход их с пеком и дистиллятом близок к постоянной вели-

Рис. 3. Распределение смоляных кислот в продуктах переработки таллового масла в зависимости от их содержания в сырье.

1 — канифоль; 2 — пек; 3 — дистилят колонны-1.

чине и составляет в среднем 170 ± 10 кг/т таллового масла. Отсюда можно заключить, что выход канифоли в основном определяется содержанием смоляных кислот в талловом масле, поступающем на переработку.

Следует отметить, что содержание смоляных кислот в талловом масле зависит от вида и породного состава древесного сырья, поступающего в сульфатно-целлюлозное производство. Талловое масло Соломбальского ЦБК содержало 33—37% смоляных кислот. Сырьем для этого предприятия служат отходы лесопиления и лесозаготовок, содержащие в качестве примеси к сосновой заболонной древесине 30—35% ели. Кроме того, на ректификацию поступало талловое масло, поставляемое Братским лесопромышленным комплексом и Байкальским целлюлозным заводом, перерабатывающими в основном сосновый и лиственничный баланс, с содержанием смоляных кислот 42—44%.

Данные фактического распределения смоляных кислот позволяют получить приближенное математическое выражение зависимости выхода канифоли от содержания смоляных кислот в талловом масле. Решая уравнение (2a) относительно выхода канифоли и подставляя из табл. 2 средние значения выходов пека и дистиллята и средние содержания смоляных кислот в пеке, канифоли и дистилляте, получаем линейное уравнение

$$B_{K} = \frac{100X_{TM} - B_{T}X_{T} - B_{T}X_{T}}{X_{K}} = \frac{100X_{TM} - \frac{0.435}{1.670} \cdot 100 \cdot 37.6 - \frac{0.810}{1.670} \cdot 100 \cdot 15.6}{80.3} = 1,245X_{TM} - 21.6, \quad (3)$$

где B_{κ} — выход канифоли с содержанием смоляных кислот 80%, % к талловому маслу;

 $X_{\mathsf{тм}}$ — содержание смоляных кислот в талловом масле, поступающем на переработку, %.

Действительно, в период обследования зависимость выхода каиифоли от содержания смоляных кислот в талловом масле была близка к линейной, о чем свидетельствуют высокие расчетные значения коэффициента корреляции 0,870 и критерия Стьюдента 7,70 при табличной величине 2,10.

Проверка уравнения (3) по данным эксплуатации установки ректификации таллового масла за 18 мес показала, что среднее абсолютное отклонение расчетного выхода канифоли от фактического составляет $\pm 1,4\%$. Корреляционный график (рис. 4) позволяет рекомендовать это уравнение для ориентировочной оценки выхода канифоли на Соломбальском ЦБК, однако оно применимо при постоянстве тех-

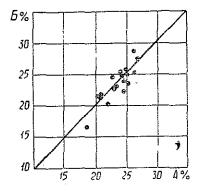


Рис. 4. Корреляционный график расчетных и фактических значений выхода канифоли.

А — результаты расчета; Б — производственные данные.

нологии и аппаратурного оформления процессов дистилляции и ректификации таллового масла в исследованном интервале изменения содержания смоляных кислот в сырье.

В целом данные, характеризующие работу установки, указывают на достаточную стабильность ее режимных параметров и, в то же время, на необходимость совершенствования технологии получения талловой канифоли.

В литературе имеются сведения о том, что из 1 т таллового масла с содержанием смоляных кислот 40% можно получить 420 кг канифоли, содержащей 85% смоляных кислот, при выходе пека 16% [4]. Полнота использования смоляных кислот таллового масла при этом достигает 90%.

Для повышения выхода канифоли и улучшения ее качества необходимо снижение термической деструкции компонентов таллового масла и повышение разделяющей способности колонных аппаратов. Увеличение в колонных аппаратах высоты насадки, применяемой в производственных условиях, не позволяет этого добиться из-за роста гидравлического сопротивления колони. При этом значительно падает вакуум в испарителях и исчерпывающих частях колони, растет температура и усиливается деструкция компонентов таллового масла.

Для установок рассматриваемого типа следует считать реальной замену используемой насыпной седлообразной насадки регулярными насадками.

Наиболее перспективна Z-образная титановая насадка для вакуумных колонных аппаратов по ОСТу 26—01—1029—74, разработанному УкрНИИмашем.

Насадка предназначена для разделения термически нестойких органических смесей, имеет низкое гидравлическое сопротивление и позволяет проводить процесс при остаточном давлении рабочей среды до 266,6 Па (2 мм рт. ст.) и температуре до 300°С.

Предварительные расчеты показывают, что замена насадки в колонных аппаратах установки ректификации таллового масла на регулярную Z-образную насадку позволит повысить эффективность колонн в среднем с 0,3—0,4 теоретических тарелок на 1 м высоты предположительно до 0,5—0,7 т. т./м, при одновременном снижении гидравлического сопротивления с 15—30 до 3—9 мм вод. ст./м, т. е. значительно улучшить условия разделения смоляных и жирных кислот таллового масла.

ЛИТЕРАТУРА

[1] Кузоватова М. А., Крылатов Ю. А., Красникова Л. Г. Талловый пск въмен капифоли.— «Бумажная промышленность», 1975, № 2. [2]. Узлов Г. А., Жукова И. П. Баланс сырья и продуктов на установке для ректификации таллово-

го масла. — Гидролизная и лесохимическая промышленность», 1973, № 2. [3]. Хэнсен Б. Л. Контроль качества. Теория и применение. Пер. с англ. М., «Прогресс», 1968. [4]. Кпоег Р. Methoden zur Verbesserung der Destillation von Tallöl. Fette — Seiten — Anstrichmittel, 12, 1970.

Поступила 5 января 1976 г.

УДК 538.113:634.0.813.11

ПАРАМАГНИТНЫЕ СВОЙСТВА МОДЕЛЬНЫХ СОЕДИНЕНИЙ СТРУКТУРНОГО ЗВЕНА ЛИГНИНА

Н. А. НИКОЛАЕВА, Э. И. ЧУПКА, В. М. НИКИТИН

Ленинградская лесотехническая академия

Приведены данные по математическому анализу спектров ЭПР некоторых модельных соединений структурного звена лигнина. Результаты исследования показали, что форма линии экспериментального спектра ЭПР может быть обусловлена наложением нескольких факторов, зависящих от условий эксперимента: агрегатного состояния, температуры, времени, начиня окислителя в системе.

Вопрос о природе парамагнетизма препаратов лигнина недостаточно изучен. Иместся несколько точек зрения на природу этого явления. Так, Кляйнерт и Стилинк предполагают, что парамагнитные свойства лигнина обусловлены его окислительными превращениями [10, 13]. В то же время имеется мнение, что парамагнетизм связан с наличием полисопряженных и конденсированных участков в макромолекуле лигнина [5].

Приведенный в литературе экспериментальный материал касается в основном сравнительной характеристики концентрации парамагнитных центров лигнина в различных препаратах. Для препаратов лигнина характерен спектр ЭПР в виде синглета [10]. Однако ни в одной из упоминаемых работ не уделяется должного внимания анализу измене-

ний формы спектров ЭПР.

Из литературы также известно, что математический анализ формы спектра ЭПР может дать ценную информацию об изменении парамагнитных свойств системы и о наличии обмена неспаренными электронами между областями их локализации. Гауссова форма линии характерна для систем, в которых отсутствует обмен между областями делокализации неспаренного электрона. При сильном обмене наблюдается лоренцева форма линии, а слабый обмен ведет к превращению формы сигнала в смешанную [2].

Пользуясь эмпирическими зависимостями [1], мы рассчитали теоретические (гауссову и лоренцеву) формы спектров ЭПР по экспериментальным данным и проследили за изменением парамагнитных свойств ряда модельных соединений структурного звена лигнина в различных агрегатных состояниях и в зависимости от условий обработки: температуры, длительности процесса и добавки окислителя.

Рассмотрим особенности формы спектров ЭПР натриевых солей модельных соединений структурного звена лигнина: кониферилового спирта, α -гваяцилпропанола, α -гваяцилпропанона, гидрохинона, ванилина, ванилинового спирта, изоэвгенола. Для этих солей характерен спектр в виде синглета с гауссовой формой распределения (рис. 1) и g-фактором $\approx 2,00$ такой g-фактор по значению близок к g-фактору свободного электрона [6].

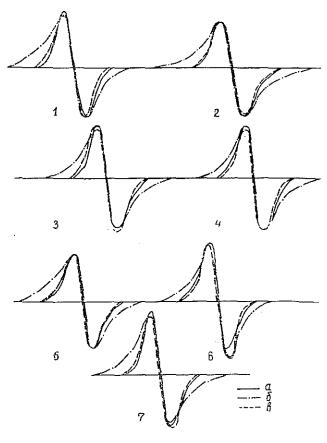


Рис. 1. ЭПР-спектры натриевых солей.

1 — кониферилового спирта; 2 — α —гваяцилпропанола; 3 — α -гваяцилпропанона; 4 — ванилинового спирта; 5 — изоэвгенола; 6 — гидрохинона; 7 — ванилина; a — экспериментальный спектр; 6 — лоренцева форма; a — гауссова форма.

Парамагнетизм натриевых солей может быть обусловлен образованием свободных радикалов при щелочной обработке, наличием ком-

плексов с переносом заряда в донорно-акцепторных парах или переходом соединения в триплетное состояние [3, 12].

концентрация Структура и центров парамагнитных триевых солей меняется в зависимости от условий опыта. Так, обработка ванилинового спирта и изоэвгенола окислителем (кислородом) в щелочной среде при температуре 70°C приводит к увеличению концентрации электропо-парамагнитных центров (рис. 2), еще до стадии интенсивного образования полимера (судя по данным гель-фильтрации через сефадекс LH-20). Следовательно, увеличение концентрации парамагнитных

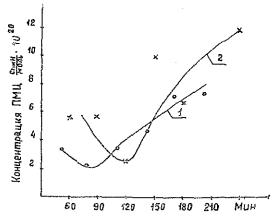
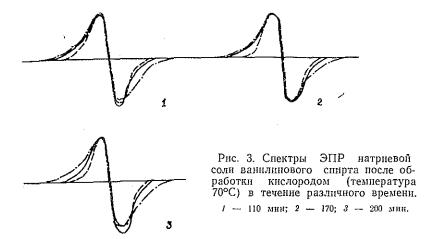



Рис. 2. Изменение концентрация свободных радикалов в зависимости от времени обработ-ки окислителем (кислородом) при температуре 70°C.

I — ванилиновый синрт: 2 — изоэвгенол.

ров вызвано окислительными превращениями мономера. При этом наблюдается также изменение формы сигнала ЭПР. Спектр ЭПР становится более асимметричным и имеет смешанную форму распределения в отличие от неокисленной натриевой соли, для которой характерен спектр с гауссовым распределением (рис. 1 и 3).

Асимметрия сигнала ЭПР может быть обусловлена анизотропией g-фактора и суперпозицией нескольких сигналов. Увеличение времени обработки окислителем приводит к изменению форм спектра (рис. 3).

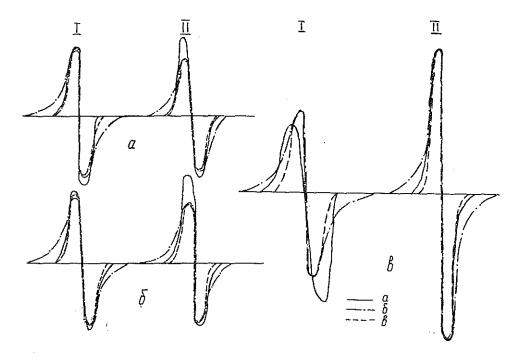


Рис. 4. ЭПР-спектры щелочных растворов.

 $1-\alpha$ -гваяцилпропанона; 2- розоловой кислоты; 3- бензохинона; a- экспериментальный спектр, 6- лоренцева форма; s- гауссова форма; I- до нагревания; II- после нагревания.

⁸ «Лесной журнал» № 1

Рассмотрим особенности сигнала ЭПР модельных соединений в щелочных растворах *. Для всех щелочных растворов модельных соединений лигнина (х-гваяцилпропанона, розоловой кислоты, бензохинона, ванилинового спирта) характерна гауссова форма спектра, но он более асимметричен, чем для натриевых солей (рис. 4). Повышение температуры от комнатной до 90°C сопровождается увеличением концентрации парамагнитных центров, что указывает на вклад термоинициирования в образовании парамагнитных центров [7]. Спектр ЭПР после нагревания имеет смешанную форму распределения в отличне от гауссовой, характерной для растворов до нагревания. Кроме того, нагревание увеличивает асимметрию сигналов. Щелочные растворы ванилинового спирта до нагревания дают спектр ЭПР в виде синглета с гауссовой формой распределения (рис. 5, а). Нагревание приводит к появлению расщепления в спектре. Мы провели раскладку расщепленного спектра, предположив, что все шесть компонентов расщепления имеют либо гауссову, либо лоренцеву линии. Полученные суммарные теоретические спектры не совпадают с экспериментальными (рис. 5). Это может быть обусловлено тем, что экспериментальный спектр представляет собой суперпозицию индивидуальных

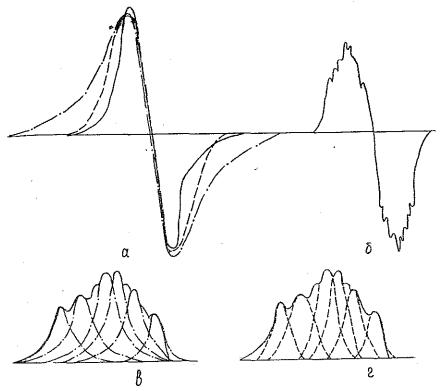


Рис. 5. ЭПР-спектры щелочного раствора ванилинового спирта.

a — до нагревания; b — после нагревания; b — все компоненты расщепленного спектра имеют лоренцеву форму линии; b — все компоненты расщепленного спектра имеют гауссову форму линии.

^{*} Спектры ЭПР щелочных растворов сняты в лаборатории Института высокомоле-кулярных соединений АН СССР.

с гауссовой, лоренцевой или смешанной формой распределения. В пользу суперпозиции говорит различие спектров ЭПР от ванилинового спирта до и после его нагревания.

Нагревание ванилинового спирта в щелочи сопровождается окислительно-восстановительными превращениями с образованием промежуточных электроно-парамагнитных центров различного химического строения по схемам, приведенным в работах [4, 8]:

$$H - C - OH$$
 CH_2OH
 CH_3
 CH_2OH
 OCH_3

Это косвенно подтверждается результатами полярографического анализа. При нагревании ванилинового спирта в щелочи на полярограммах появляется 5—6 волн восстановления. Окислительно-восстановительные характеристики ($E^{-1}/_2$) образовавшихся при нагревании компонентов изменяются в зависимости от рН среды [4].

Итак, проведенный математический анализ показал, что форма линии экспериментального спектра ЭПР может быть обусловлена наложением нескольких факторов, связанных с условиями эксперимента.

ЛИТЕРАТУРА

[1]. Блюменфельд Л. А., Воеводский В. В., Семенов А. Г. Применение ЭПР в химии. Новосибирск, 1962, с. 77. [2]. Богуславский Л. И., Ванников А. В. Органические полупроводники и биополимеры. М., 1968, с. 33. [3]. МакГлинн С., Дзуми Т. А., Киносита М. Молекулярная спектроскопия триплетного состояния. М., 1972, 448 с. [4]. Николаева Н. А., Чупк Э. И., Никитин В. М. Анализ ЭПР-спектров лигинна. — ИВУЗ, «Лесной журнал», 1976, № 2, с. 103—108. [5]. Чудаков М. И. Промышленное использование лигиниа. М., 1972, с. 43—47. [6]. Чупка Э. И., Малева И. Л., Храпкова Т. А., Брснов Л. В., Никитин В. М. Изменение физико-химических характеристик гваяцильных производных при щелочных обработках. — Химия древесины, 1974, т. 1, с. 31. [7]. Чупка Э. И., Бронов Л. В., Никитин В. М. Поведение некоторых модельных соединений лигинна при нагревании в шелочных средах. — В кн.: Химия древесины. Рига, 1974, № 15, с. 62—67. [8]. Чупка Э. И. Роль некоторых окислительно-восстановительных процессов при делигинфикации древесины щелочными способами. Дис. на соиск. ученой степлокт. хим. наук. Л., 1975. [9]. Эндрюс Л. Дж., Кифер Р. М. Молекулярные комплексы в органической химии. М., 1967, 207 с. [10]. К 1 е i n e r f Т. N. Stable Free Radicals in various Lignín Preparations. — «Таррі», 1967, 50, № 3, pp. 120—122. [11]. К r a t z 1 К., S c h ā f e г W., С l a u s Р., G r a t z 1 I., Schilling zur Oxydation von С 14-markierten Phenolen in wassrig-alkalischer Lössung mit sauerstoff. — Monatshefte für Chemie, 1967, 98, № 3, pp. 891—904. [12]. S a r k a n e n. K. V. Lignins. Occurence Formation Structure and Reaction. Willey-Interscience, 1970, pp. 433—483. [13]. Y o u n g M., S t e e l i n k C. Peroxîdase Catalyzed Oxidation of Naturally Occuring Phenols and Hardwood Lignins. — Phytochemistry, 1973, 12, pp. 2851—2861.

ЛЕСНОЙ ЖУРНАЛ

1977

КОМПЛЕКСНАЯ МЕХАНИЗАЦИЯ И АВТОМАТИЗАЦИЯ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ

УДК 658.382.3:001.18

ПРОГНОЗ БЕЗОПАСНОСТИ ТРУДА

Д. Д. РЕПРИНЦЕВ, Ю. И. МЕРЕМЬЯНИН

Воронежский лесотехнический институт

Предлагается аналитический метод прогноза безопасности труда, позволяющий на стадии планирования организации труда на базе того или иного оборудования намечать организационно-технические меры по предупреждению отрицательного воздействия опасности и вредности.

Создание безопасных и безвредных производственных условий составная часть научной организации производства и труда. Для улучшения условий и повышения безопасности труда необходима разработка методики перспективной оценки состояния условий труда. Уровень безопасности, как одну из характеристик состояния процесса труда, можно оценивать двумя способами: один из них основан на всестороннем анализе уже происшедших событий, второй предусматривает аналитический прогноз безопасности при внедрении новой техники или при организации работ по прогрессивным методам, что позволяет заранее увидеть недостатки в планируемых мероприятиях и предусмотреть меры по их ликвидации.

В статье рассмотрен метод аналитического прогноза производственной опасности и вредности. Вероятность возникновения опасной ситуации зависит от величины физических параметров окружающей среды и параметров механизмов и устройств, с которыми во время работы сталкивается человек. Так, например, на безопасность труда машиниста башенного крана существенное влияние оказывают такие параметры физико-механической сферы окружающей среды, как шум, температура, освещенность фронта работ, метеорологические условия, а также режим работы крана, грузоподъемность, устойчивость и другие показатели, характеризующие техническую сферу производственной обстановки. Параметры должны соответствовать их допустимым значениям. При отклонении хотя бы одного параметра от его допустимого значения возникают условия для формирования опасной ситуации.

Безопасность труда того или иного объекта работы можно характеризовать некоторым вектором A(t), изменяющимся во времени. Его можно задавать координатами $a_k(t)$, определяющими физическую или техническую сферу условий труда, от которых зависит положение вектора A(t) *,

$$A(t) = [a_1(t), a_2(t), ..., a_k(t)],$$
 (1)

Очевидно, одни из этих координат более потенциально опасны, другие — менее. Допустимый интервал изменения координаты $a_k(t)$ для разных k будет различным. Поэтому все множество координат может быть разбито на отдельные множества по степени опасности. Однако

^{*} В данной работе разбирается лишь одна реализация вектора в какой-то фиксированный момент времени без учета времени t.

реализация любой из этих координат выше ее порогового значения дает начало формированию опасной ситуации.

Обозначим пороговое значение для координаты $a_k(t)$ через a_k' . Рассмотрим событие B_k , заключающееся в реализации координаты выше ее порогового значения

$$a_k(t) \geqslant a_k'$$

Вероятность этого события

$$P(B_{k}) = P\left[a_{k}(t) \geqslant a_{k}^{'}\right]. \tag{2}$$

Это выражение представляет собой вероятность того, что координата $a_k(t)$ превысит пороговое значение a_k . Можно получить k случайных событий с вероятностями:

$$P(B_1) = P \left[a_1(t) \geqslant a_1' \right];$$

$$P(B_2) = P \left[a_2(t) \geqslant a_2' \right];$$

$$\vdots$$

$$\vdots$$

$$P(B_k) = P \left[a_k(t) \geqslant a_k' \right].$$
(3)

Задача оценки условий труда с точки зрения выяснения степени их опасности и вредности может быть сведена аналитически к оценке приведенной системы вероятного распределения потенциально опасных координат, характеризующих объект или организацию производства.

координат, характеризующих объект или организацию производства. Найдя вероятности $P\left[a_k\left(t\right)\geqslant a'_k\right]$ в этой системе, можно по теоремам теории вероятности определить любые характеристики, которые

определяют уровень безопасности работ.

События B_1 , B_2 , ..., B_k , которые могут привести к основному событию A, называются типотезами; само же событие A (опасная ситуация) прсизойдет совместно с одним из событий B_k группы (3). Вероятность того, что произойдет опасное событие вследствие реализации события B_k , обозначим как P (A/B_k). Эта вероятность называется условной, так как она вычисля при условии того, что произошло событие B_k .

Пусть $P\left(A/B_k\right)$ будет вероятность того, что опасная ситуация возникла вследствие превышения допустимого порога a_1 При этом предполагается, что в системе событий $B_1,\ B_2,\ ...,\ B_k$ учтены все причины, т. е. гипотезы составляют полную группу несовместных событий. Очевидно событие A может появиться только в комбинации с какой-либо из этих гипотез:

$$A = B_1 A + B_2 A + \dots + B_k A. \tag{4}$$

На основании теоремы сложения запишем

$$P(A) = P(B_1 A) + P(B_2 A) + \dots + P(B_k A) = \sum_{i=1}^k P(B_i A).$$
 (5)

По теореме умножения найдем

$$P(A) = \sum_{i=1}^{n} P(B_i) P(A_i B_i).$$
 (6)

Следовательно, полная (средняя) вероятность события A равна сумме произведений вероятностей гипотез на условные вероятности события A, вычисленные соответственно при каждой из гипотез.

Рассмотрим следующий пример. При изучении процесса формирования опасной ситуации из-за падения груза на погрузочно-разгрузочных работах был выявлен ряд причин, вызывающих неисправности тросо-блочной системы. Собранные данные позволили получить статистические значения вероятностей гипотез P(k) и условных вероятностей $P(A/B_R)$ падения груза (табл. 1).

Таблица 1

Гипотезы	Вероятности	Условные вероятности	Произведения
B ₁ B ₂ B ₃ B ₄ B ₅ B ₆ B ₇ B ₈ B ₉ B ₁₀	0,10	0,01	0,001
	0,08	0,03	0,0024
	0,12	0,03	0,0036
	0,06	0,02	0,0012
	0,14	0,02	0,0028
	0,10	0,06	0,006
	0,09	0,03	0,0027
	0,10	0,04	0,004
	0,11	0,03	0,01
	0,004	0,0033	0,001

Учитывались следующие причины событий (гипотезы):

 B_1 — заедание подшипника блока;

 B_2 — косое натяжение каната;

Вз — малая прочность матернала блока;

 B_4 — поломка подшипника;

 B_5 — большая жесткость каната;

 B_6 — погнутость ограждений блока;

 B_7 — выпадение каната из ручья блока;

 B_8 — заедание каната на блоке;

 B_9 — закручивание каната;

 B_{10} — неправильная запасовка каната на блоках.

Сложением произведений $(P(B_k)P(A|B_k)$, записанных в последней строке таблицы, получена вероятность падения груза

$$P(A) = \sum_{k=1}^{k=10} P(B_k) P(A/B_k) = 0.028.$$

Для предупреждения опасных ситуаций необходимо, чтобы вероятность P(A) равнялась нулю. Достичь этого можно введением технических и организационных усовершенствований, уделив особое внимание $P(B_h)$, имеющим наибольшее значение.

Таким образом, на основании статистических материалов можно найти характеристики безопасности работ в данном производстве, кроме того, рассмотренный метод прогноза безопасности позволяет предварительно наметить организационно-технические меры по устранению источников опасности и вредности или ограничению их отрицательного влияния еще при планировании организации труда на базе того или иного оборудования.

1977

УДК 533.6.011.6

К ОБОБЩЕНИЮ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ПО АЭРОДИНАМИКЕ ЦИКЛОННЫХ КАМЕР

С. В. КАРПОВ, Э. Н. САБУРОВ

Архангельский лесотехнический институт

Изложен метод обобщения опытных данных по аэродинамическим характеристикам циклонных камер, основанный на использовании внутренних связей и закономерностей циклонного потока. Рекомендованы расчетные уравнения.

Циклонные устройства получили широкое распространение в различных областях техники, благодаря возможностям интенсификации рабочих процессов и повышения их технологических и энергетических показателей. Использование циклонного принципа в процессах сушки, а также при сжигании мелких древесных отходов (коры, щепы, опилок, стружки) и лигнина представляется весьма перспективным.

Особенности работы циклонных устройств в значительной степени определяются движением в них газов. В настоящее время накоплен обширный экспериментальный материал по аэродинамике циклонных камер различного технологического назначения. Рядом авторов предложены методы расчета аэродинамики. В целях дальнейшего совершенствования и развития этих методов необходимо обобщить имеющиеся опытные данные исходя из единых позиций, используя комплексные параметры, внутренние связи и установленные закономерности циклонного потока.

Данная работа является попыткой исследования в этом направлении и в то же время продолжением и развитием ранее рассмотренной схемы расчета [1].

При струйном представлении циклонного потока максимальная вращательная скорость в его ядре $w_{\varphi m}$ служит одной из основных характеристик [1]. Важный элемент схемы расчета ее величины, рассмотренной в работах [1, 7], — определение вращательной скорости на границе осесимметричного ядра потока $w_{\varphi n}$. В результате изучения особенностей взаимодействия струй, вытекающих из сопел (шлицев), со стенками рабочего объема и со спутным, вращающимся относительно оси камеры, потоком, а также обработки большого числа опытных данных * нами было установлено, что безразмерная величина этой скорости $\overline{w}_{\varphi n} = \frac{w_{\varphi n}}{V_{\text{вх}}}$ ($V_{\text{вх}}$ — средняя скорость газов во входных каналах) зависит лишь от одной геометрической характеристики — эффективной относительной площади входа

^{*} В работе использованы многочисленные опытные данные, полученные на кафедре теплотехники АЛТИ, а также результаты опубликованных исследований Б. Д. Кациельсона, Д. Н. Ляховского, Б. П. Устименко, Е. А. Нахапетян, П. М. Михайлова, Л. Н. Сидельковского, А. В. Тонконогого, Л. Л. Калишевского, Е. Д. Балуева и Ю. В. Троянкина, В. В. Вышенского, Г. В. Якубова, М. А. Бухмана, М. А. Глинкова и А. А. Портнова, М. И. Деветериковой, Т. К. Лукьянович, Л. К. Житкевича и А. М. Гулюка, С. М. Иванова и И. М. Ханина, Н. И. Сыромятникова, Е. В. Волкова и В. И. Суслова, А. А. Овчинникова и Н. А. Николаева, Е. П. Золотько, Ц. Унгуряну, Х. Тейла, Ф. Нейса, Х. Гутмайера.

$$\overline{f}_{\text{BX}}^{\text{sop}} = \frac{f_{\text{BX}}}{(R - r_{\text{S}})L} = \frac{\pi \overline{f}_{\text{BX}}}{2\overline{L}(1 - r_{\text{S}})}, \tag{1}$$

здесь

 $f_{\rm Bx},\ L,\ r_{\rm s}$ — соответственно суммарная площадь входа, длина камеры и радиус осесимметричного ядра потока;

$$\overline{f}_{\rm BX} = \frac{4f_{\rm BX}}{\pi D^2}$$
, $\overline{I} = \frac{L}{D}$, $\overline{r_{\rm S}} = \frac{r_{\rm S}}{R}$ — их безразмерные величины; R, D — внутренние радиус и диаметр циклонной камеры.

Как видно из формулы (1), $\bar{f}_{\rm nx}^{\rm sop}$ представляет собой отношение суммарной площади входа к условной площади пристенной зоны течения, радиальная протяженность (ширина) которой ограничена радиусом $r_{\rm so}$. Последний, в свою очередь, зависит практически от всех важнейших геометрических параметров циклонных устройств [2] и может быть определен по рекомендациям [4].

Результаты обобщения опытных данных (для области приближен-

ной автомодельности) аппроксимированы формулой

$$\overline{w}_{\varphi g} = \frac{1.5 \overline{f}_{BX}^{9 + 10^2}}{\overline{f}_{BX}^{9 + 10^2} + 9} \,. \tag{2}$$

Уравнение (2) справедливо лишь для гладкостенных камер. Влияние относительной шероховатости поверхности $\overline{\delta} = \frac{\delta}{D}$ (δ — высота выступов шероховатости) на \overline{w}_{qq} можно учесть по рекомендациям [4], умножая полученное по формуле (2) значение \overline{w}_{qq} на поправочный коэффициент

$$k_{\delta} = 1 - 1,688\overline{\delta}^{0,28}\overline{L}^{0,2}$$
 (3)

Анализ показал, что \overline{w}_{φ_8} , характеризующая изменение скорости на входе в циклонную камеру, однозначно связана с другой входной характеристикой — относительным уменьшением запаса потенциальной энергии на входе в камеру, т. е. с отношением статического давления на боковой поверхности рабочего объема $P_{\rm c.\ cr}$ и в шлицах $P_{\rm c.\ bx}$.

Установлено, что

$$\overline{w}_{\varphi_{\rm R}} = \frac{0.21}{\frac{P_{\rm c.nx}}{P_{\rm c.o.r}} - 0.88}.$$
 (4)

Используя выражения (2) и (4), легко определить соотношение $\frac{P_{\rm c.\,cr}}{P_{\rm c.\,nx}}$, необходимое для нахождения статического давления на стенке,

$$\frac{P_{\text{c,ct}}}{P_{\text{c,bx}}} = \frac{\bar{f}_{\text{bx}}^{\text{s}\phi} \cdot 10^2}{1,02 \,\bar{f}_{\text{sy}}^{\text{s}\phi} \cdot 10^2 + 1,25} \,. \tag{5}$$

Распределение статического давления $P_{\rm c}$ в циклонной камере практически полностью соответствует распределению вращательной скорости w_{φ} , поэтому можно предположить, что $w_{\varphi m}$, являющаяся характеристикой уровня вращательных скоростей, определенным образом связана с максимальной величиной избыточного статического давления — статическим давлением на боковой поверхности рабочего объема.

В работе [8] предложен и конкретный вид данной связи

$$\overline{P}_{
m c,bx} \! pprox \! \overline{P}_{
m c,cr} \! \sim \! \overline{w}_{
m \phi m}^2$$
 ,

здесь

$$\overline{P}_{\rm c.cr} = \frac{2P_{\rm c.cr}}{\rho V_{\rm ex}^2} \, ; \quad \overline{P}_{\rm c.ex} = \frac{2P_{\rm c.ex}}{\rho V_{\rm ex}^2} \, . \label{eq:property}$$

Однако принятое при этом условие $\overline{P}_{\rm c.\,nx}$ \approx $\overline{P}_{\rm c.\,ct}$, как показали наши исследования [2], выполняется лишь при $\overline{f}_{\rm Bx}$ $10^2 > 6 \div 8$, т. е. в тех случаях, когда потери напора в системе воздухораспределения относительно невелики. При малых же $\overline{f}_{\rm Bx} \cdot 10^2$ (менее 3—4) они могут быть значительными, поэтому для более правильной оценки затрат энергии на создание крутки в рабочем объеме и определения выходных потерь шиклонной камеры необходимо выделить входные условия, что отмечается и в работах [5, 6]. Кроме того, квадратичный закон зависимости $\overline{P}_{\rm c.ct} = f(\overline{w}_{\varphi m})$ получен при существенных упрощающих предпосылках: в частности, распределение w_{φ} в периферийной зоне вплоть до стенки считается квазипотенциальным; на радиусе $r_{\varphi m}$, соответствующем положению $w_{\varphi m}$, статическое давление $P_{\rm c}=0$.

В результате обработки большого количества опытных данных по гидравлическим характеристикам циклонных камер и распределениям $P_{\rm c}$ и $w_{\rm p}$, полученных авторами и другими исследователями, для расчета статического давления на стенке можно рекомендовать следующее уравнение:

$$\overline{P}_{\text{c.cr}} = 2\overline{w}_{\varphi m}^{9:5}.$$
 (6)

Для нахождения $\overline{w}_{\varphi m}$, согласно методике аэродинамического расчета [1, 7], кроме $\overline{w}_{\varphi m}$ необходимо знать $\overline{r}_{\varphi m} = \frac{r_{\varphi m}}{R}$ и $\varepsilon_{\rm H} = \frac{\overline{w}_{\varphi m}}{\overline{w}_{\varphi m}}$ коэффициент крутки в ядре потока. Последний может быть определен аналитически [1].

Радиус $r_{_{\phi m}}$, характеризующий положение максимума вращательной скорости и являющийся масштабной величиной при решении аэродинамической задачи $[1,\ 7]$, для незагруженных камер определяется в основном безразмерными величинами диаметра выходного отверстия $\overline{d}_{\text{вых}} = \frac{d_{\text{вых}}}{D}$, площади входа $\overline{f}_{\text{вх}}$, шероховатости боковой поверхности $\overline{\delta}$.

Для расчета \overline{r}_{qm} можно рекомендовать следующую эмпирическую зависимость:

$$\overline{r}_{\varphi m} = \frac{\overline{d}_{\text{BMX}} \left[1 - 6.2 \left(\ln \overline{d}_{\text{BMX}} + 0.51 \right) \sqrt{\delta} \right]}{5 \left(\frac{0.85}{\overline{d}_{\text{BMY}}} - 1 \right) \overline{f}_{\text{BX}} + 0.7}$$
(7)

Формулы (2) — (7) могут быть использованы для расчетов в следующих диапазонах основных геометрических характеристик циклонных камер: $\overline{f}_{\rm BX} \cdot 10^2 = 0.5 \div 21$; $\overline{d}_{\rm BMX} = 0.2 \div 0.6$; $\overline{L} = 0.5 \div 2.5$; $\overline{h}_{\rm BX} \times 10^2 = 1.5 \div 15$; $(\overline{h}_{\rm BX} = \frac{h_{\rm BX}}{D})$; $\overline{h}_{\rm BX} = \frac{h_{\rm BX}}{D}$; $\overline{h}_{\rm BX} = \frac{h_{\rm BX}}{D}$; $\overline{h}_{\rm BX} = \frac{h_{\rm BX}}{D}$ высота шлицев, $\overline{h}_{\rm BX} = \frac{1}{2} \cdot 10^{-4} \div 1.86 \times 10^{-2}$. Они применимы для камер с числом вводов по периметру

 $(5.41 \cdot 10^{-2} \le$ от 1 до 4, с прямоугольными и цилиндрическими соплами $\ll \overline{d}_{\text{вх}} = \frac{d_{\text{вх}}}{D} \ll 12.1 \cdot 10^{-2}; d_{\text{вх}}$ — диаметр сопла).

Один из важных элементов аэродинамического расчета циклонных камер — определение суммарного коэффициента сопротивления по вхо-

$$\zeta = \frac{2\Delta P_{\pi}}{\rho V_{\text{ax}}^2} = \overline{P}_{\text{c.sx}} + 1, \tag{8}$$

 $\Delta P_{\rm n}$ — перепад полного давления в камере. здесь

С учетом формул (4) и (6) после несложных преобразований уравнение (8) можно привести к следующему виду:

$$\zeta = 1 + 0.42\overline{w}_{\varphi m}^{4/5} \left(\varepsilon_{\pi} + 4.2\overline{w}_{\varphi m}\right) \tag{9}$$

или

$$\zeta = 1 + 0.42 \overline{w}_{\varphi m}^{4/5} \left(\varepsilon_{\pi} + 4.2 \overline{w}_{\varphi m} \right)$$

$$\zeta = 1 + 0.42 \varepsilon_{\pi}^{9/5} \left[\left(4.2 + \frac{1}{\overline{w}_{\varphi \pi}} \right) \overline{w}_{\varphi \pi}^{9/5} \right].$$
(10)

Формула (10) показывает, что изменение ζ в зависимости от чис-(у — коэффициент кинематической вязкости воздуха при входных условиях) в неавтомодельной области течения [3] определяется только влиянием этого критерия на $w_{_{244}}$.

В заключение отметим, что выполненное обобщение большого опытного материала по основным аэродинамическим характеристикам циклонных камер позволило сократить число эмпирических уравнений, входящих в методику их аэродинамического расчета, и сделать ее более удобной для анализа циклонных процессов и практических расче-TOB.

ЛИТЕРАТУРА

[1]. Сабуров Э. Н. К методике аэродинамического расчета диклонно-вихревых камер. — ИВУЗ, «Лесной журнал», 1968, № 4. [2]. Сабуров Э. Н., Карпов С. В. К вопросу о течении потока в пристенных областях циклонных камер. — Труды АЛТИ, вып. 31, 1971. [3]. Сабуров Э. Н., Карпов С. В. О некуторых особенностях аэродинамики циклонных камер в неавтомодельной области течения потска. — ИВУЗ, «Энергетика», 1974, № 11. [4]. Сабуров Э. Н., Карпов С. В. О методике расчета аэродинамики циклонно-вихревых нагревательных устройств.— ИВУЗ, «Энергетика», 1975, № 8. [5]. Тагер С. А. Расчет аэродинамического сопротивления циклонных камер сгорания. — «Теплоэнергетика», 1971, № 7. [6]. Троянки н. Ю. В., Балуев мер сгорания. — «теплоэнергетика», 1971, № 7. [0]. Гроянки и Ю. В., Байусь Е. Д. Аэродинамическое сопротивление и совершенство циклонной камеры. — «Теплоэнергетика», 1969, № 6. [7]. Штым А. Н., Михайлов П. М. Каэродинамике закрученного потока в циклонно-вихревых камерах. — ИВУЗ, «Энергетика», 1965, № 11. [8]. Якубов Г. В. Исследование некоторых закономерностей движения потока в циклонных камерах. Автореф. дисс. на соиск. учен. степени канд. техн. наук. Алма-Ата, 1971.

№ 1

УДК 634.982.6:51

ПРИМЕНЕНИЕ ЦЕПЕЙ МАРКОВА В ИССЛЕДОВАНИИ РАБОТЫ ТЕХНОЛОГИЧЕСКИХ ЛИНИЙ

В. И. ШУСТОВ, Ю. В. ЛЕБЕДЕВ Уральский лесотехнический институт

Рассмотрена работа поточной линии нижнего склада леспромхозов. В исследовании использован аналитический аппарат, разработанный для цепей Маркова. Определена пропускная способность оборудования, входящего в поточную линию.

Узел разгрузки лесовозных автопоездов и раскряжевки хлыстов на нижнем складе леспромхоза представляет собой производственную систему, состоящую из отдельных последовательно расположенных машин и механизмов. При проектировании и эксплуатации таких систем возникают задачи, для решения которых необходимо знать количественные и качественные зависимости между элементами системы. Вероятностный характер производственных процессов обусловливает возникновение очередей автопоездов, пакетов хлыстов, отдельных хлыстов и сортиментов.

Рассмотрим технологическую линию, состоящую из разгрузочно-растаскивающего устройства РРУ-10М, манипулятора ЛО-13С, раскряжевочной установки ПЛХ-ЗАС и сортировочного транспортера. Поток автопоездов является входящим потоком требований в данную систему интенсивностью λ , отдельные механизмы — каналами обслуживания с интенсивностью обслуживания μ . Выходящий поток от одного канала будем считать входящим потоком для следующего жанала с интенсивностью λ [2], за единицы требований приняты пакеты хлыстов.

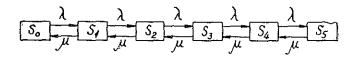


Рис. 1. Граф состояний системы массового обслуживания (СМО).

Исследование рассмотренной системы выполнено при помощи аналитического аппарата, разработанного для специальных марковских цепей — так называемой «схемы гибели и размножения» [1]. Основными понятиями такой схемы являются состояния элементов системы и переходы из одного в другое. Система находится в некотором состоянии, если она полностью описывается значениями переменных, которые задают его; система совершает переход из одного состояния в другое, если описывающие ее переменные дискретно изменяются. На рис. 1 дан граф состояний системы, в которой каждое из состояний S_1 , S_2 , S_3 , S_4 связано с двумя другими, а S_0 и S_5 — только с одним. Здесь каждое состояние имеет следующий смысл:

 S_0 — канал свободен;

 S_1 — канал занят, очереди нет (m = 0);

 S_2 — канал занят, одно требование в очереди (m = 1);

 S_3 — канал занят, два требования в очереди (m=2); S_4 — канал занят, три требования в очереди (m=3); S_5 — канал занят, четыре требования в очереди (m=4).

Случайный процесс «гибели и размножения» с графом состояний (рис. 1) описывается следующими алгебраическими уравнениями для вероятностей состояний [1]

$$\lambda P_{0} = \mu P_{1};$$

$$\lambda P_{1} + \mu P_{1} = \lambda P_{0} + \mu P_{2};$$

$$\lambda P_{2} + \mu P_{2} = \lambda P_{1} + \mu P_{3};$$

$$\lambda P_{3} + \mu P_{3} = \lambda P_{2} + \mu P_{4};$$

$$\lambda P_{4} + \mu P_{4} = \lambda P_{3} + \mu P_{5};$$

$$\mu P_{5} = \lambda P_{4};$$
(1)

где

$$P_0 + P_1 + P_2 + P_3 + P_4 + P_5 = 1$$
,

После решения уравнений (1) имеем для вероятностей состояний элементов системы

$$P_0 = \frac{1 - \rho}{1 - \rho^{m+2}}; \quad P_i = \rho^i P_0 \ (i = 1, 2, \dots, 5), \tag{2}$$

где

$$\rho = \frac{\lambda}{\mu}$$
,

Относительная q и абсолютная A пропускные способности элементов системы определяются по формулам

$$q = 1 - \frac{\rho^{m+1} (1-\rho)}{1-\rho^{m+2}}; \quad A = \lambda' q. \tag{3}$$

После обработки хронометражных наблюдений нами получены следующие значения интенсивностей обслуживания:

разгрузка автопоездов с $\mu_1 = 10.0$; подача хлыстов на раскряжевку с $\mu_2 = 3.39$; раскряжевка хлыстов с $\mu_3 = 1.70$; сортировка древесины с $\mu_4 = 2.04$.

Приведенные данные исследовали в указанной выше последовательности, т. е. входящий поток с $\lambda=1-5$ лесовозных автопоездов в час обслуживается PPУ-10M с интенсивностью $\mu_1=10$ поездов в час. Абсолютная пропускная способность PPУ-10M служила входящим потоком для манипулятора с интенсивностью обслуживания $\mu_2=3,39$ пакетов в час. Аналогично выходящий поток манипулятора — входящий поток пилы АЦ-3С с $\mu_3=1,7$ пакета в час и, наконец, результаты расчетов пилы — входящий поток транспорта с $\mu_4=2,04$ пакета в час.

Все расчеты выполнены на ЭВМ «Наири-2»; результаты представлены на рис. 2, a— ϵ , по которым сделаны следующие выводы.

1. Абсолютная пропускная способность системы уменьшается с увеличением числа последовательно расположенных механизмов. Например, при интенсивности поступления на склад пяти лесовозных поездов в час РРУ-10М будет обслужено 4,9 автопоездов, манипулятором — 2,6 пакетов, пилой — 1,2 и транспортером — 1,1 пакета в час.

2. Несмотря на то, что механизмы не обеспечивают 100%-ного обслуживания поступивших поездов (пакетов хлыстов), имеют место простои механизмов. Так, PPУ-10М простаивает до 50%, пила и транс-

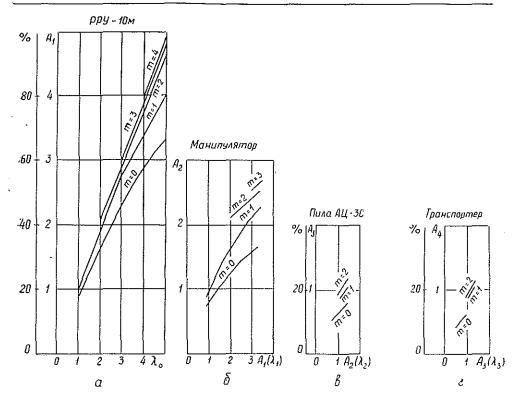


Рис. 2. Зависимость пропускной способности механизмов A от интенсивности подачи $\hat{\lambda}$ и запасов на буферных площадках m.

портер — до 30% общего времени, а иногда и более, в зависимости от длины очереди и интенсивности поступления древесины. Это объясняется совпадением моментов, например, прибытия лесовозного поезда и занятостью PPУ-10M. Аналогичное положение складывается при работе других последовательно расположенных механизмов, поэтому на выходе из системы резко уменьшается ее пропускная способность.

Сменная производительность полуавтоматической линии может колебаться от 100 до 170—200 ${\rm M}^3$ в зависимости от m и λ .

В 1973 г. в Бисертском опытно-показательном леспромхозе объединения Свердлеспром сменная выработка на полуавтоматическую линию составила 168 м³, в Красноярском — 149 м³. Как видно, Бисертский ЛПХ имеет возможность поднять производительность полуавтоматической лынии на 30-40 м³, а Красноярский — на 50 м³ в смену.

ЛИТЕРАТУРА

[1]. Вентцель Е. С. Исследование операций. М., «Советское радио», 1972. [2]. Саати Т. Г. Элементы теории массового обслуживания и се приложение. М., «Советское радио», 1971.

Поступила 3 марта 1976 г.

ЛЕСНОЙ ЖУРНАЛ

1977

ЭКОНОМИКА И ОРГАНИЗАЦИЯ ПРОИЗВОДСТВА

УДК 658.589

РАСЧЕТ СТРУКТУРЫ ПАРКА И ПЕРИОДОВ ЗАМЕНЫ МАШИН

В. Я. ЛАРИОНОВ

Московский лесотехнический институт

Предлагается математическая модель задачи эффективности использования парка машин, с помощью которой можно: 1) рассчитать организацию работы парка машин; 2) определить периоды замены и количество типоразмеров машин или их капитальных ремонтов; 3) рассчитать структуру парка машин.

В лесной промышленности имеются значительные резервы повышения эффективности производства путем оптимального распределения оборудования по видам работ и своевременного обновления парка машин. Эксплуатация изношенных машин, устаревших и снятых с производства, а поэтому не обеспечиваемых запасными частями, сопровождается большими простоями из-за технической неисправности и ведет к удорожанию работ.

В связи с этим особый интерес представляет решение следующих задач:

- 1. Заданы количество и структура ресурсов. Требуется найти оптимальные способы их расстановки и использования для получения наибольшего экономического эффекта при заданных объемах работ и ограничениях.
- 2. Заданы количество и структура ресурсов. Требуется определить дополнительное количество и структуру ресурсов или замену имеющихся, чтобы получить наибольший экономический эффект при заданных условиях и ограничениях.

3. Заданы объемы и сроки выполнения работ. Необходимо определить количество и структуру ресурсов с учетом действующих условий и

ограничений.

бот

Основные условия этих трех задач — требования технологии работ.

В ряде работ по организации производства [1, 4, 5] авторы предлагают отдельные модели для задач 1 или 3. Вопросы дополнительного укомплектования парка и периодичности ремонта или замены машин не решаются. Между тем разработка универсальной модели, позволяющей решать любую из трех задач, представляет большой интерес.

Приведем обобщенную математическую модель задачи. Запишем основные рекуррентные соотношения. Условие выполнения объема ра-

$$\sum_{k} p_{kit} x_{kit} = Q_{it} \qquad (i = 1, 2, \dots, m; \quad t = 1, 2, \dots, T). \tag{1}$$

Количество машин, выполняющих работу в периол t, не должно превышать их общего числа в парке

$$\sum_{i} \sum_{k} x_{kii} \leqslant b_j + g_u + x_r - d_s. \tag{2}$$

Критерием оптимальности являются приведенные суммарные затраты

$$L = \min \left[\sum_{t} \sum_{i} \sum_{k} c_{kit} x_{kit} + \sum_{u} (H_u + c_u) g_u + \sum_{r} (EK_r + c_r) x_r - \sum_{s} \lambda_s d_s \right].$$
(3)

Условия неотрицательности решения:

В приведенных формулах приняты следующие обозначения:

 Q_{ii} — объем работ вида i, который должен быть выполнен за период t;

 p_{kit} — производительность машины марки k на работе i за период t;

 x_{klt} — количество машин марки k, необходимое для выполнения работы i за период t;

 b_{i} — количество машин марки j в парке;

 g_u — количество машин марки u, капитально отремонтиро-

 x_r — количество машин марки r, которыми необходимо укомплектовать парк;

 d_s — количество машин марки s, подлежащих списанию;

 c_{kit} , c_u , c_r — стоимость содержания одной машины соответствующих марок *k, u, r;*

 H_u — затраты на капитальный ремонт машины марки u;

E— коэффициент экономической эффективности; K_r — стоимость машины марки r; λ_s — остаточная стоимость машины марки s.

Математическая модель в таком виде позволяет решить любую из трех приведенных задач.

Приняв в функционале (2)

$$g_u = 0; \quad x_r = 0; \quad d_s = 0,$$
 (5)

получим задачу 1.

Модель в представленном виде даст возможность решить залачу 2.

Если в функционале (2) принять

$$b_i = 0; \quad g_u = 0; \quad d_s = 0,$$
 (6)

получим задачу 3.

Остается еще не решенным вопрос, являющийся составной частью задачи 2, о периодичности замены или капитальных ремонтов машин. Естественно, что замена машин производится в том случае, если затраты на их содержание превышают эффект, получающийся при их использовании. При этом нужно предусматривать возможность капитального ремонта машины и последующего ее использования. Функции состояния D имеют в этом случае смысл приведенных затрат на планируемый период. Рекуррентные соотношения для этих функций можно записать так:

$$D_v = \min \begin{cases} \sum_{v} c_{kiv} x_{kiv} & -\text{продолжать использовать машину;} \\ \sum_{v} (H_{uv} + c_{uv}) g_{uv} & -\text{направить машину в капитальный } \\ \sum_{v} (EK_{rv} + c_{rv}) x_{rv} & -\text{приобрести новую машину.} \end{cases}$$
 (7)

Предполагается, что решения о капитальном ремонте или замене машины принимаются последовательно в каждый из периодов $v=1,2,\ldots,V$.

Все рассмотренные модели решаются известными методами целочисленного программирования (4). Однако наложение дополнительных условий целочисленности на x_{kit} , g_u , x_r значительно усложняет алгоритм решения задачи. В то же время известно, что задачи рассматриваемого класса имеют одну общую черту: вблизи минимума затраты слабо зависят от изменения управления. Это свойство позволяет приближенными методами получить стратегию, близкую к оптимальной. Поэтому накладывать условие целочисленности на x_{kit} , g_u , x_r не обязательно, так как нецелые их значения здесь вполне поддаются разумной интерпретации. В этом случае решение задач значительно упрощается, так как к ним применимы обычные методы линейного программирования [2] и методы оптимального распределения ресурсов [3].

Размеры матрицы ограничений (1) и (2) при расчетах крупных парков машин получаются большими (количество зависимостей (1) не превышает m T, а количество зависимостей (2) — n T). В целях уменьшения размеров матрицы рекомендуется несколько расчетных периодов объединять в один T_1 . Такое объединение возможно только в случае, если совокупность шифров работ A_i в одном из периодов t_i содержит в себе всю совокупность шифров работ B_i в других периодах t_i .

Если появляется хотя бы одна работа, которой нет в рассматриваемом периоде, то выделяется новый расчетный период, т. е.

$$T_{i} = \sum_{i} t_{i} \text{ при } A_{i} \cap B_{i}; \tag{8}$$

$$T_1 = t_i \operatorname{\pipm} A_i \cup B_i. \tag{9}$$

Вычисление соотношений (7) трудностей не вызывает.

ЛИТЕРАТУРА

[1]. Борисов Г. А. и др. Математические модели организации производства.—«Механизация строительства», 1968, № 3. [2]. Гольштейн Е. Г., Юдин Д. Б. Новые направления в линейном программировании. М., «Советское радио», 1966. [3]. Гурин Л. С. и др. Задачи и методы оптимального распределения ресурсов. М., «Советское радио», 1968. [4]. Луцкий С. Я. Выбор оптимального распределения парка машин. — «Экономика строительства», 1967, № 2. [5]. Сорокин П. И. и др. Оптимальный поток при возведении земляного полотна. — «Автомобильные дороги», 1970, № 2.

УДК 634.031.: 658,5.003.1

ЭКОНОМИЧЕСКИЕ ОСНОВЫ ИНТЕГРАЦИИ ЛЕСОЗАГОТОВОК, ДЕРЕВОПЕРЕРАБОТКИ И ЛЕСНОГО ХОЗЯЙСТВА

А. П. ПЕТРОВ, Р. В. КАРДАКОВА

Ленипградская лесотехническая академия

Рассмотрены основные тенденции и экономические основы развития процесса комбинирования лесозаготовок, деревоперерабатывающих производств и лесного хозяйства. Через систему выбранных показателей доказана экономическая эффективность функционирования комплексных предприятий на примере Украинских Карпат.

На формы развития лесной промышленности* и лесного хозяйства (концентрация, специализация, комбинирование и кооперирование производства) влияют следующие факторы:

- 1) потребности народного хозяйства в древесине (объем и ассортимент конечной продукции);
- 2) обеспеченность лесными ресурсами, с учетом их транспортной, технологической и экономической доступности;
- 3) состояние районных балансов производства и потребления древесины и продуктов ее переработки;
- 4) технический прогресс в деревообрабатывающих отраслях, на лесозаготовках и в леснем хозяйстве;
- 5) уровень развития производительных сил в целом по стране и по отдельным районам;
- 6) обеспеченность народного хозяйства трудовыми, материальными и финансовыми ресурсами и их распределение с учетом необходимости удовлетворения всесторонних потребностей его развития;
- 7) значение лесов в общегосударственной системе мероприятий по охране скружающей среды.

Изменение влияния этих факторов в их взаимосвязи обусловливает эволюцию форм развития лесной промышленности и лесного хозяйства в направлении интепрации всего комплекса производств, от лесовыращивания до переработки древесины в конечные продукты. Рассмотрим экономическую основу и движущие силы этой интеграции.

По мере неуклонного развития народного хозяйства потребность в древесине и продуктах ее переработки постоянно увеличивается. Расширение ассортимента продукции конечного потребления происходит как в результате развития традиционных способов и процессов, так и путем создания новых производств, основанных прежде всего на химико-механической и химической переработке сырья.

Технологические процессы, основанные на химической и химико-мехапической переработке древесины, с одной стороны, обеспечивают получение широкого ассортимента прогрессивных материалов конечного потребления, пользующихся большим спросом (бумага, картон, пластма сы, пластики, гидрелизно-дрожжевые и лесохимически продукты); с другой стороны, применение таких процессов позволяет вовлечь в пе-

^{*} В термин «лесная промышленность» здесь и далее мы включаем лесозаготовки и все отрасли, перерабатывающие древесину.

⁹ «Лесной журнал» № 1

реработку ранее не использовавшиеся ресурсы мягколиственной и низкосортной хвойной древесины и отходов.

Именно последний момент меняет экономическую стратегию лесных

производств, ранее развивавшихся обособленно.

На стадии экстенсивного развития деревоперерабатывающие производства, осуществляя свою деятельность, как правило, на базе узкоспециализированных предприятий (лесопильные, фанерные и целлюлозные заводы, бумажные фабрики и т. д.), получали в качестве сырья только деловую древесину твердо обусловленной спецификации по сортам и размерам.

Лесозаготовительная промышленность, выполняя эти заказы на поставку сырья, нерационально использовала лесфонд, широко применяла условно сплошные рубки, допускала в отдельных районах перерубы

расчетной лесосеки по хвойному хозяйству.

Лесное хозяйство, не располагая надлежащей материально-технической базой, осуществляло в пассивной форме функции контроля за сос-

тоянием и использованием лесных ресурсов.

По мере того, как в деревоперерабатывающих производствах создаются вызванные техническим прогрессом условия для организации комплексного использования древесного сырья, экономические интересы лесоперерабатывающей и лесозаготовительной отраслей начинают сближаться. Такое сближение практически реализуется через развитие комбинирования и кооперирования лесозаготовок с деревопереработкой, осуществляемое в форме создания лесопромышленных комплексов, районных территориальных узлов, леспромхозов с развитой переработкой древесины.

Интеграция лесозатотовок с деревопереработкой значительно расширяет сырьевые ресурсы; улучшается использование лесосечного фонда, ликвидируются условно сплошные рубки, возрастает доля и значение рубок ухода за лесом, нормализуется лесопользование в целом.

Помимо вполне очевидного народнохозяйственного эффекта, укрепляется финансовое состояние лесозаготовительной промышленности, что позволяет ей, укрепив материально-техническую базу, постепенно переходить на новые, прогрессивные с лесоводственной точки зрения, виды рубок, создавая условия для расширенного воспроизводства лесных ресурссв.

Отмеченные моменты формируют основу для обеспечения экономических интересов деревопереработки, лесозаготовок и лесного хозяйства, поскольку, с синой стороны, лесное хозяйство расширяет сырьевые ресурсы за счет развития рубок промежуточного пользования, с другой стороны, лесозаготовители активно воздействуют на процесс воспроизводства лесных ресурсов.

Сближение экономических интересов деревопереработки, лесозаготовок и лесного хозяйства практически реализуется через создание комплексных предприятий, объединяющих в себе все эти виды деятель-

ности.

Как видно, процесс интеграции деревопереработки, лесозаготовок и лесного хозяйства развивается в три стадии (рис. 1); длительность стадий различна для различных районов страны в силу влияния отмеченных ранее факторов.

Однако неизменна следующая закономерность: народнохозяйственные потребности формируют производственную структуру перерабатывающих отраслей в направлении обеспечения комплексного использования сырья; деревоперерабатывающие производства повышают рента-

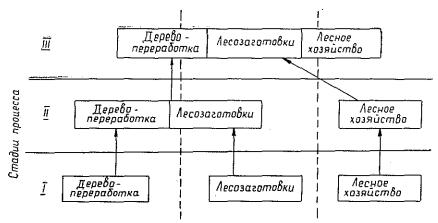


Рис. 1. Процесс интеграции деревопереработки, лесозаготовок и лесного хозяйства.

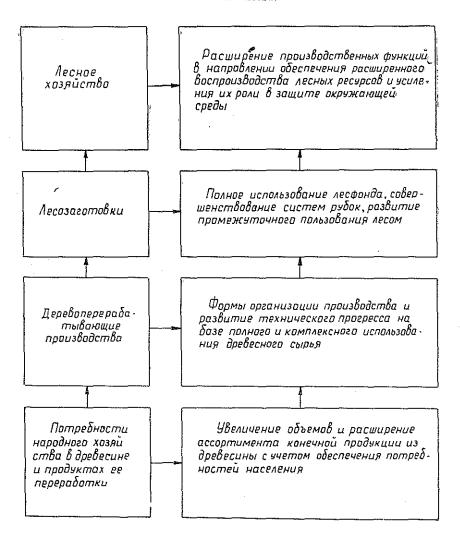


Рис. 2. Экономические основы интеграции деревопереработки, лесозаготовок и лесного хозяйства.

бельность лесозаготовок в силу присущих им устойчивых темпов технического прогресса (через перераспределение финансовых ресурсов); лесозаготовители через рациональное использование лесфонда и изменение системы рубок активно способствуют выполнению задач, стоящих перед лесным хозяйством; лесное хозяйство значительно расширяет масштабы и функции своей деятельности, направленной на воспроизводство лесных ресурсов и повышение их роли в охране природы и защите окружающей среды (рис. 2).

Рассмотрим тенденции в развитии процесса комбинирования лесозаготовок, деревопереработки и лесного хозяйства на примере организованных в 1959 г. комплексных постоянно действующих предприятий Украинских Карпат (табл. 1).

Таблица 1

		Знач	гения показа	телей по го	дам	
Показатели	1 970	1971	1972	1973	1974	1975
Объем вывозки, тыс. м ³						
всего	1089,3 1431,5	1034,1 1468,7	1030,7 $1472,0$	1052,9 1457,4	1004,1 1488,5	1045,0 1595,6
в том числе по главному пользованию	695,8 776,1	627,0 784,7	594,1 809,0	526.4 804,9	525,0 806,7	525,9 816,4
Себестоимость 1 м ³ заго- товленной древесины, рк.	17 <u>—36</u> 18 <u>—5</u> 2	$\frac{18-07}{19-06}$	18—33 19—31	$\frac{18-68}{19-44}$	18—99 19—62	20-29 $20-56$
Рентабельность лесозаго- товок, %	$\frac{-1,2}{-4,5}$	$\frac{-4.3}{-8.2}$	$\frac{-7,2}{-9,0}$	<u>9,9</u> 9,9	$\frac{-11,1}{-11,4}$	$\frac{-20,5}{-18,5}$
Товарная продукция, млн. р.					1	
всего	$\frac{79,2}{92,0}$	$\frac{81,1}{96,0}$	$\frac{83,2}{101,2}$	$\frac{91,2}{102,3}$	96,9 106,0	$\frac{104,4}{111,9}$
в том числе продукция деревообработки	56,2 60,7	58,9 64,5	60,5 69,3	$\frac{67,0}{71,0}$	73,4	80,0 79,2
Отношение прибыли дере- вообработки к общей при- были лесокомбинатов, %	115,0 96,0	102,1	111,4 107,4	128,4 111,1	130,0	157,8 160,0
Операционные затраты по лесному хозяйству, млн. р.	5,91 5,14	6,18 5,30	6,21 5,70	6,52 5,93	6,57 5,99	6,65 6,16

Примечание. В числителе данные по объединению Прикарпатлес; в знаменателе — Закарпатлес.

По мере истощения запасов спелого леса, ухудшения условий лесоэксплуатации экономические показатели лесозаготовок постоянно ухудшаются (снижается оптовая цена, растет себестоимость, уменьшается рентабельность лесозаготовок). Объемы вывозки по объединениям в основном стабилизировались, при этом существенно увеличилась доля древесины от рубок ухода.

Несмотря на стабилизацию объемов лесозаготовок и ухудшение размерно-качественных характеристик заготовляемой древесины, выпуск товарной продукции значительно повысился, что было обеспечено развитием деревообрабатывающих производств. Данные табл. 2 свидетельствуют о высокой рентабельности перерабатывающих производств по сравнению с лесозаготовками (данные за 1975 г.).

Эффективность различных отраслей в комплексных предприятиях оценивается их реальным вкладом в образование прибыли.

Таблица 2

Виды продукции	Объем произ- водства, тыс. м ³	Себестоимость 1 м ³ продук- ции, рк.	Оптовая цена 1 м ³ , рк.	Рентабель- пость, %
Пиломатериалы	400,8 108,9	41-62 49-79	$\frac{32-21}{58-57}$	$\frac{-8,2}{+17,6}$
Tapa	42,3	72—76 57—25	67 - 56 $62 - 48$	$\frac{-7,7}{+9,1}$
дсп	103,8	73—85 72—94	89 -03 87 - 25	$\frac{+20,6}{+19,6}$
Черновые мебельные заготовки	51,7	90—82 75—41	104—45 107—10	$\frac{+15,0}{+42,0}$
Клепка заливная	4,3 6,5	76—28 80—00	93—95 99—19	$\frac{+23,2}{+24,0}$

Примечание. В числителе данные по объединению Прикарпатлес; в знаменателе — Закарпатлес.

Если рассмотреть отношение прибыли деревообрабатывающих производств к общей прибыли лесокомбинатов (в динамике за 1970—1975 гг.), то можно установить, что она постоянно увеличивается (с 115 до 157,8% по Прикарпатлесу и с 96 до 160% по Закарпатлесу). Все это показывает, что убыточность лесозаготовок покрывается финансовыми дотациями, получаемыми от деревообработки.

Развитая благодаря наличию финансовых ресурсов (прибыли) материально-техническая база лесокомбинатов позволяет вести интенсивное лесное хозяйство, о чем свидетельствует рост операционных затрат, среди которых особенно заметно увеличивается доля собственных.

Опыт деятельности комплексных предприятий Украинских Карпат, прибалтийских республик, Краснодарского края убедительно подтверждает их преимущества; однако этот опыт следует распространять только в тех районах, где сложились экономические условия для объединения лесозаготовок с лесным хозяйством. В настоящее время это многолесные области Северо-Запада, Волго-Вятского района Среднего Урала, где лесозаготовительные предприятия работают в условиях ограниченного лесопользования, а потребности в древесине со стороны перерабатывающих производств неуклонно возрастают.

Создание комплексных предприятий в названных районах — это эволюционный процесс, предусматривающий трансформацию действующих лесозаготовительных и лесохозяйственных предприятий, изменение масштабов и профиля их деятельности, установление оптимальных размеров и производственной структуры, совершенствование организационных форм управления.

Поступила 1 ноября 1976 г.

1977

УДК 658.155.4:634.0.31/.36

К ВОПРОСУ О РЕЗЕРВАХ КОМПЛЕКСНЫХ БРИГАД НА ЛЕСОЗАГОТОВКАХ

В Н. НИКОЛАЕВ

Комитипрониилеспром

Показано, что обобщая передовой опыт и применяя математический анализ равномерности загрузки укрупненных комплексных бригад по месяцам года, можно выявить резервы увеличения объемов лесозаготовок и производительности труда.

Укрупненные комплексные бригады стали основной формой организации труда на лесозаготовках. В 1975 г. в леспромхозах объединения Комилеспром работало 399 укрупненных бригад. Ими заготовлено 8,5 млн. м³ древесины, что составляет 67% общего объема лесозаготовок. Двадцать пять бригад перешагнули сорокатысячный рубеж.

Проанализируем деятельность трех укрупненных бригад, работаю-

щих в разных производственных и лесорастительных условиях.

Бригада П. П. Животкаускаса из Верхне-Печорского леспромхоза, работая на базе трех тракторов ТДТ-55, заготовила 48 423 м³ леса и на 13 853 м³ перевыполнила плановое задание, обеспечив выработку 72,8 м³ на тракторо-смену при плане 51,4 м³, а выработка на 1 чел.-день составила 12,4 м³ вместо 8,6 м³ по плану. Высокой производительности труда добились и бригады М. А. Царегородцева (Палаузский ЛПХ) и В. М. Станковича (Комсомольский ЛПХ).

В то же время при успешном выполнении плановых заданий в бригадах все еще имеют место внутрисменные простои рабочих и трелевочных тракторов, составляющие 5—9%. Поэтому большой резерв повышения объемов лесозаготовок и производительности труда на лесосечных работах заключается в ритмичной работе комплексных бригад за счет сокращения внутрисменных потерь времени.

Резервы увеличения объемов лесозаготовок, связанные с неритмичностью работы бригад, с неполным использованием их потенциальных возможностей можно выявить, применяя математический анализ запрузки бригад по месяцам года. Такой анализ можно выполнить с по-

мощью известного в статистике графика Лоренца.

При расчете количественной характеристики графика нами использованы данные укрупненной комплексной бригады П. П. Животкаускаса за 1975 г. Для построения графика взят квадрат 100×100 мм (рис. 1). На оси ординат отложены значения объема заготовки леса (каждому проценту объема лесозаготовок соответствует 1 мм шкалы на графике), ось абсцисс разделена на 12 равных частей (по числу месяцев в году). При равномерном выполнении объема производства в течение года график кумулятивных (нарастающих) итогов для каждого месяца представляется диагональю AB, которая называется линией равенства.

Данные табл. 1 показывают, что фактическое распределение объема лесозаготовок неравномерно. Для построения линии Лоренца динамические ряды объемов производства, представленные в табл. 1, преобразуют в восходящие ранжированные ряды и рассчитывают кумуля-

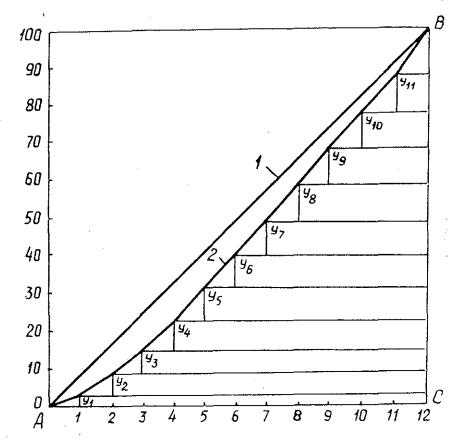


Рис. 1. График Лоренца. 1 — линия равенства; 2 — линия Лоренца.

Таблица 1 Динамические ряды месячных объемов лесозаготовок укрупиенных комплексных бригад за 1975 г. (% к годовому итогу)

Номер		Месяц											Ī
брига- ды	ī	11	111	IV	v	VΙ	VII	viii	IX {	x	ΧI	XII	Итого
1 2 3	6,4 7,4 7,8	3,1 7,6 8,4	9,7 11,8 8,4	7,5 7,5 8,7	9,0 9,5 9,7	9,8 8,3 9,9	11,3 8,0 12,2	10,3 8,9 8,2	9,7 8,3 6,8	8,4 8,0 8,0	6,2 7,9 6,6	8,6 6,8 5,3	100 100 100

Примечание. Бригада № 1 — бригадир П. П. Животкаускас; № 2 — М. А. Царегородцев; № 3 — В. М. Станкович.

тивные итоги для каждого месяца (табл. 2 и 3). В ранжированном ряду месяцы располагаются уже не в хронологическом порядке. Кумулятивные итоги ранжированного ряда показаны точками на рисунке. Полученные точки соединяют линией, которая и называется линией Лоренца. Положение этой линии (2) относительно линии равенства (1) характеризует степень равномерности использования рабочих и механизмов в данной бригаде. Для измерения площади, заключенной между линиями 1 и 2 (линией равенства и линией Лоренца), прини-

					Табл
Ранжированные	ряды	месячных	объемов	лесозаготовок	
	T/ONE	пакония б	OUESE		

Номер	Единица совокупности												
брига- ды	1	2	3	4	5	6	7	8	9	10	11	12	Итого
1 2	3,1 6,8 5.3	6,2 7,4 6.6	6,4 7,5 6.8	7,5 7,6	8,4 7,9 8.0	8,6 8,0 8.2	9,0 8,0 8,4	9,7 8,3 8.4	9,7 8,3	9,8 8,9	10,3 9,5 9,9	11,3 11,8	100 100 100

Таблица 3

ица 2

Кумулятивные итоги ранжированного ряда месячных объемов лесозаготовок комплексных бригад

Номер	Единица совокупности											
брига- ды	1	2	3	4	5	6	7	8]	9	10	11	12
1 2 3	3,1 6,8 5,3	9,3 14,2 11,9	15,7 21,7 18,7	23,2 29,3 26,5	31,6 37,2 34,5	40,2 45,2 42,7	49,2 53,2 51,1	58,9 61,5 59,5	68,6 69,8 68,2	78,4 78,7 77,9	88,7 88,2 87,8	100 100 100

маем метод Б. И. Пасхавера*, разработанный для исчисления индексов концентрации. Эту площадь он назвал факторной площадью, а оставшуюся часть площади треугольника — остаточной.

Как видно из рис. 1, площадь всего треугольника АВС равна 5000 мм 2 . Для нахождения остаточной площади S_a воспользуемся формулой, предложенной Б. И. Пасхавером,

$$S_{\text{ocr}} = \frac{100}{n} [50 + y_1 (n-1) + y_2 (n-2) + ... + y_{n-1}],$$

где $y_1, y_2, ..., y_{n-1}$ — месячные объемы заготовки леса, соответствующие ранжированному ряду;

n — число отрезков, равное числу месяцев в году.

Факторная площадь представляет собой разность между площадью треугольника и остаточной площадью

$$S_{\text{факт}} = 5000 - S_{\text{ост}}$$
.

Остаточная площадь пропорциональна объему производства, выполненному бригадой в течение года, а факторную площадь следует рассматривать как резерв увеличения производственной мощности комплексной бригады при более рациональном использовании трудовых ресурсов и лесозаготовительной техники.

Внутрипроизводственный резерв бригады ΔV м³ можно опреде-

лить по формуле

$$\Delta V = \frac{V}{S_{\text{oct}}} S_{\phi \text{akt}},$$

где V — годовой объем лесозаготовок.

При постоянной численности рабочих в бригаде производительность труда на рабочего изменяется пропорционально объему произ-

^{*} Пасхавер Б. И. Использование графика Лоренца для измерения уровня концентрации. — «Вестник статистики», 1970, № 2, с. 62—63.

водства. Следовательно, резерв увеличения выработки на каждого ра-бочего в бригаде составляет

$$\Delta \Pi T = \frac{\Pi T}{S_{\text{oct}}} S_{\text{факт}},$$

где ΠT — производительность труда, м³.

Резерв увеличения производительности труда на каждого рабочего в бригаде при условии равномерной работы в течение года определяется согласно табл. 4.

Таблица 4

	Фактич	еские показ	затели	Расчетные	показателн	Оценка потенциальных резервов			
Номер брига- ды	Объем ра- бот V, м ³	Числен- ность бригады,	Выработка на одного рабочего	площадь	Факторная площадь, Ѕфакт.	Производ- ственной мощности	Производитель- ности труда д <i>ПТ</i>		
		чел.	IIT, M ³	MM ²	MM ²	ΔV , \mathbf{M}^3	М ³	%	
1 2 3	48 423 53 434 33 350	13 17 12	3725 3143 2779	4306 4630 4449	694 370 551	7803,9 4270,4 4130,4	600,3 251,2 341,2	16,1 8,0 12,4	

Из показателей таблицы видно, что резервы увеличения производственной мощности и производительности труда значительны. Реализация только этой части резерва производства позволит повысить производительность труда в бригаде N = 1 на 16,1%, в бригаде N = 2 на 8% и в бригаде N = 3 на 12,4%.

Исследуя с помощью графика Лоренца возможности бригад, можно определить и резервы увеличения объемов лесозаготовок при максимальном использовании трудовых ресурсов и лесозаготовительной техники в сложившихся условиях производства без увеличения численности рабочих, что является важным условием повышения эффективности лесозаготовительного производства.

Поступила 17 июня 1976 г.

УДК 634.0.907

ИЗДЕРЖКИ РЕКРЕАЦИОННОГО ЛЕСОПОЛЬЗОВАНИЯ В ПРИЧЕРНОМОРЬЕ

A. H. TAPACOB

Ленинградская лесотехническая академия

Приведена математическая модель издержек рекреационного использования причерноморских лесов, согласно которой определяющими факторами издержек являются участие сосны в составе, количество осадков и интенсивность посещения лесов.

В Причерноморье, от Севастополя до Батуми, использование лесных территорий для туризма и отдыха становится существенным способом их эксплуатации. В 1974 г. на общей площади леса 14 тыс. км² рекреанты провели в прогулках и походах около 30 млн. часов, или по 21 ч/га. Предоставление лесов для туризма и отдыха связано с определенными издержками, выявление которых необходимо для повышения эффективности лесопользования.

Рекреационные издержки связаны со строительством и функционированием предприятий и сооружений, обслуживающих туристов и отдыхающих, и посещением ими леса. В данной статье рассматриваются только последние. В условиях Причерноморья эти издержки складываются из следующих основных элементов.

- 1. Ущерб от пожаров особенно велик в лесах крымской и пицундской сосны при осадках менее 800 мм в год (Ялта, Маркхотский хребет, Джанхот); значительно ниже в лиственных лесах той же зоны и резко сокращается по мере увеличения влажности. Сосновые насаждения наиболее пожароопасны и в лесах с обильными осадками (Пицунда, урочище Сосновка на оз. Рица). В верховьях Мзымты, Лашипсы при количестве осадков до 3300 мм практически не бывает пожаров.
- 2. Ущерб от рубки леса довольно значителен в местах популярных стоянок неорганизованных туристов, использующих деревья и кустарник на дрова, колья и подстилку. Выборочные замеры показали, что за сутки один неорганизованный турист уничтожает около 0,13 м³ различной древесины. Следы таких рубок особенно заметны в живописных местах у моря, озер, автодорог и в субальпийском редколесье вдоль высокогорных туристских маршрутов.
- 3. Ущерб от вытаптывания леса. Уплотнение почвы и подстилки, уничтожение мохового и травяного покрова, эрозия на крутых тропах, отаптывание корней, уничтожение всходов и молодняка, все это связано с массовым посещением лесов около городов и курортных мест, особенно у водоемов, смотровых площадок, в экзотических рощах (Пицундский бор за пределами ограды, Сухумская гора, Орлиные скалы в г. Сочи, Прибрежная тропа в Джанхоте).
- 4. Затраты на противопожарные мероприятия, включая устройство дорог и минерализованных полос, оплату сторожей и дорогостоящее содержание вертолетов. Под влиянием рекреация величина этих расходов в расчете на 1 га/год колеблется от 7,3 р. (Ялтинский лесхоз) до 0,4 к. (Сухумский лесхоз).
- 5. Затраты на лесокультурные лесопарковые мероприятия, связанные с рекреацией. Лесопарковые мероприятия включают реконструкцию насаждений, устройство дорог и трошиночной сети, укрытий, мостов, парапетов. В лесах интенсивного рекреационного использования большинство статей затрат лесного хозяйства так или иначесвязано с туризмом и отдыхом.

Между ущербом от пожаров, рубок, вытаптывания леса, с одной стороны, и затратами на лесопарковые и противопожарные мероприятия, с другой, имеются существенные различия. Первые снижают рекреационные ресурсы территории, вторые их увеличивают. Затраты четко фиксируются в бухгалтерокой отчетности, ущерб же зачастую вовсе не оценивается. В лесах преимущественно курортного значения оценка ущерба по таксовой стоимости уничтоженной древесины неправомерна. Нами он рассчитан по величине утраченного экономического эффекта, исходя из дифференциальной ренты.

В результате проведенного занализа выделены три основных фактора, определяющих величину рекреационных издержек лесопользования в Причерноморье.

1. Интенсивность посещения лесов всеми туристами и отдыхающими, выражаемая количеством человеко-часов посещений на 1 га в год. Традиционный показатель числа посетителей в дни наибольшего притока рекреантов или в выходные дни недостаточно полно характеризует интенсивность.

2. Доля пожароопасных пород в древостое. Статистика пожаров и данные о температуре воспламенения и теплотворности кроны позволяют поставить породы по восходящей пожароопасности в следующий ряд: лиственные, темнохвойные, сосна.

Долю пожароопасных пород Π выражаем по формуле

$$\Pi = C + 0.4T,$$
(1)

где C — доля сосны;

T — доля темнохвойных.

3. Годовое количество осадков. Снижая опасность пожаров, они увеличивают опасность эрозии, но в целом уменьщают рекреационные издержки.

По данным за 1971—1974 гг. методом наименьших квадратов для издержек рекреационного использования И получена следующая модель:

$$U = 3 + 19\Pi + 0.0155P - 0.00283B$$
 р./(га·год), (2)

где Π — доля пожароопасных пород по формуле (1);

P — рекреационная интенсивность, Ψ (га · год);

B — количество осадков, мм/год.

Логическая интерпретация формулы весьма проста: увеличение доли сосны на 5% или интенсивности посещения на 65 ч увеличивает издержки на 1 р., увеличение же осадков на 350 мм снижает их на 1 р. Величина стандартной ошибки $\pm 1,9$ р., т. е. с вероятностью 0,95 можно утверждать, что расчетная величина издержек отклоняется от истинных размеров не более, чем на 3,8 р.

Нанбольшее расхождение между фактическими и расчетными издержками наблюдается в Сочинском лесхозе, поскольку здесь значительны затраты по организации лесопарков (80 к/(га тод). В целом расчетные издержки согласуются со среднегодовыми данными в большей степени, чем с ежегодными.

Коэффициенты парной корреляции показывают, что издержки наиболее тесно связаны с составом пород (r=0.89), осадками (r=-0.6)и меньше с интенсивностью посещения (r = 0.35).

Естественно, что формула (2) применима лишь к территории причерноморских лесов более 3700 га; издержки на меньшей площади могут привести к полному уничтожению леса.

Поступила 25 февраля 1975 г.

№ 1 лесной журнал

1977

КРАТКИЕ СООБЩЕНИЯ И ОБМЕН ОПЫТОМ

УДК 634.0.284.4

ЦЕНТРАЛИЗОВАННЫЙ СБОР СОКА ЛИСТВЕННЫХ ПОРОД

В. П. РЯБЧУК

Львовский лесотехнический институт

Приводятся данные о системе сокопроводов, состоящей из обслуживающих шлангов, шлангов-усов и магистрального сокопровода.

При промышленной подсочке лиственных пород (березы и клена) в настоящее время возле каждого дерева, как правило, устанавливают стеклянные трехлитровые бутыли. Их собирают по мере наполнения один — два раза в сутки. Однако в период максимального соковыделения неминуемо переполнение банок соком в ночное время. Наконец, сбор сока в этом случае требует немалых трудовых затрат и не обеспечиласт должных санитарных условий добычи. Указанных неблагоприятных явлений удается избежать, применяя централизованный сбор сока лиственных пород по разветвленной системе сокопроводов в общий сокосборник [5—7].

Опыты по централизованному сбору сока мы проводили в течение двух лет на постоянной пробной площади, заложенной в Ивано-Франковском учлесхоззаге Львовской области Ежегодно подсанивали 63 лерева березы днаметром от 20 до 60 см.

постоянной прооной площади, заложенной в изано-франковском учлесхозате извовской области. Ежегодно подсачивали 63 дерева березы днаметром от 20 до 60 см.

Технология сбора сока заключалась в следующем. В отверстия, высверленные в стволах березы, заоивали желобки [1, 2, 5], изготовленные из нержавеющей стали. Нагрузку на деревья определяли с учетом длительности подсочки, днаметра стволов и сгепени развития растений [3, 4]. На конец желобка надевали резиновые шланги, названные нами обслуживающими. Если в стволе высверливали 2—6 отверстий, свободные концы шлангов прикрепляли к шлангу-усу соединителями, изготовлениыми из стекла или лучше из пластмасс. По количеству отверстий соединители могут быть 3—7-канальными.

От каждого дерева сож транспортировался по шлангам-усам, а затем через 3или 4-канальные соединители он стекал к магистральному сокопроводу и в сокосборник.

На рис. 1 приведена схема централизованного сбора сока лиственных пород при условии применения 3-4- (деревья a-e) или 5-7-канальных (деревья m-u) соединителей.

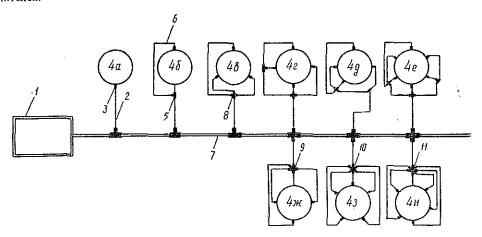


Рис. 1. Схема централизованного сбора сока лиственных пород.

1 — сокосборник;
 2 — шланги-усы;
 3 — желобки;
 4а—4и — деревья;
 5 — 3-канальный соединитель;
 6 — обслуживающие шланги;
 7 — магистральный сокопровод;
 8,
 9,
 10,
 11 — соответственно
 4-,
 5-,
 6 и
 7-канальные соединители.

В качестве обслуживающих шлангов, а также шлангов-усов могут служить резиновые трубки диаметром 5—10 мм. Для магистральных сокопроводов целесообразно применять резиновые трубки диаметром от 10 до 25 мм в зависимости от количества подсачиваемых деревьев и технологии подсочки.

В табл. I приводится расчетная длина обслуживающего шланга L_2 в зависимости от диаметра дерева, нагрузки на дерево (количество отверстий) и типа соединителей.

Таблица 1

Лиаметр деревьев, см	Длина (обслуживаю при ко	цего шланга личестве от	і на одно де верстий	рево, м,
CSI	2	3	4	5	6
20	0,5		_	_	
24	0.7	0,9		· 	
28	0.7		1,1		_
32	0,8	<u>1,0</u>	1,2 1,5	1,6	$\frac{1,7}{2,0}$
36		1,1	1,3	1,7 1,9	1,8 2,3
40	<u></u>	1,2	1,4	$\frac{1.8}{2.1}$	$\frac{1.9}{2.5}$
44	<u> </u>	1,2 1,3 1,4 1,4 1,5	1,5 1,9	$\frac{2,0}{2,2}$	$\frac{2.1}{2.6}$
48	_	1,4	$\frac{1,6}{2,0}$	$\frac{2,1}{2,4}$	$\frac{2,2}{2,8}$
52		1.4	1,7	$\frac{2,2}{2,5}$	$\frac{2,3}{3,1}$
56		1,5	1,8	$\frac{2,3}{2,7}$	$\frac{2,4}{3,2}$
60		1,6	1,9	2,5	$\frac{2.6}{3.4}$

-Примечание. В числителе — длина шланга при использовании 3-4-канальных соединителей; в знаменателе -5—7-канальных.

Общую длину шлангов-усов L_1 на весь подсачиваемый участок можно определить, преобразуя известную формулу для среднего расстояния между деревьями

$$L_1 := \sqrt{FN}$$
,

где F — площадь подсачиваемого участка, м²; N — число подсачиваемых деревьев, шт.

Таким образом, общая длина обслуживающих шлангов и шлангов-усов $L_{\rm обш}$, имеющих один и тот же диаметр,

$$L_{\text{obst}} = L_1 - \Sigma L_2$$

где ΣL_2 — сумма длин обслуживающих шлангов на каждое подсачиваемое дерево. Длина магистрального сокопровода равна расстоянию от сокосборника до максимально удаленного от него дерева.

Потребное количество соединителей на один ствол в зависимости от их типа,

циаметра деревьев и количества отверстий показано в табл. 2.

Шланги, как правило, укладывают с учетом рельефа и естественных уклонов. Если рельеф ровный, сток сока регулируют, делая небольшие углубления-борозды или просверливая отверстия в стволе на разных высотах от поверхности земли. Шланги

Таблица 2

	!	· -		Потре	бность і	з соедин	ителях		\ <u>\</u>			
Диа- метр ле-	3-ка	3-канальных при количестве отверстий							4-канальных при количестве отверстий			
ревьев, см	1	2	3	4	5	6	3	4	5	6		
20	1	2	_					_				
20 24 28 32 36	l i	2 2 2 2	1	l —	ļ		1	J —]	_		
28	_	2	1	2	<u> </u>	<u> </u>	1	1	_	_		
32	ļ — '	2	1	2	1	2	1	1	2	2		
36	l —		1	2	1	$\frac{2}{2}$	1	1	$\frac{2}{2}$	2		
40	! — .	ļ 	1	2] 1	2	1	1	2	2		
44		_ :	1	2	1	$\bar{2}$	[1	[1	2	2		
48		- -	1	2	1	2	1	1	2	2		
44 48 52 56		-	1	2	1	2	1	1	2	$\frac{5}{2}$		
56	-	—	1	2	1	2	1	1	2			
60	! — ,	 -	1	1 2	1	2	1	1 1	12	2		

Примечание. В случае применения 5—7-канальных соединителей при 4, 5 и 6 отверстиях на ствол необходимы один 5-7-канальный соединитель и один 3-канальный.

нумеруют в соответствии с номерами подсачиваемых деревьев для облегчения мон-

тажа сокопроводов в следующем сезоне.

Аналогичную технологию сбора сока в условиях Северной Америки описывает Л. Кострон [7]. Он отмечает, что сок транспортируют с помощью помп по шлангам прямо в пункты переработки или непосредственно на сахарозаводы. Такая технология, делает вывод автор, дает возможность собирать сок чистым, быстро, при незначительных затратах.

Как показали наши опыты, при сборе сока с помощью индивидуальных сокоприем-

ников один рабочий за сезон собирает в среднем 6—7 т сока, при применении централизованного сбора сока — 10—11 т, т. е. на 41—51% больше.

Кроме того, при централизованном сборе сока отпадает необходимость в индивидуальных сокоприемниках, в результате чего свижается себестоимость продукции. В среднем на 1 га требуется 350 стеклянных банок по 40 к. При 3-летнем сроке использования ежегодные затраты на их приобретение составят 46 р. 67 к.

Потребность в резиновом шланге составляет в среднем 1700 м на 1 га. При стои-

мости 6 к. за 1 м и сроке службы 6 лет ежегодные затраты равны 17 р. По предварительным подсчетам, себестоимость 1 т сока при централизованном сборе в 1,3-1,6 раза меньше, чем при ныне существующей технологии подсочки лиственных пород.

Приведенные данные показывают целесообразность централизованного сбора сока лиственных пород и могут найти применение при организации добычи соков на со-

временном научно-техническом уровне.

ЛИТЕРАТУРА

[1]. Колдаев В. Н. Прижизненное использование березняков. — «Лесное хозяйство», 1971, № 4. [2]. Орлов И. И. Березовый и кленовый соки. М., «Лесная промышленность», 1974. [3]. Рябчук В. П. К вопросу о нагрузке подсачиваемых деревьев березы.—ИВУЗ, «Лесной журнал», 1974, № 5. [4]. Рябчук В. П. Методика определеосредел.— кто с. к. чесной журнал», 1974, № 5. [4]. Рябчук В. П. Методика определения нагрузки при подсочке лиственных пород.—«Лесохимия и подсочка», 1976, № 6. [5]. Телишевский Д. А. Сокровища леса. Львов, «Вища школа», 1974. [6]. Fred E., Winch J. New York's Maple Sirup Crop.—«The Northeastern Loccer», June, 1961. [7]. Kostron L. Pozyskiwanie i wikorrystywanie wiosennych sokow z drew lesnich.— «Sylwan», 1974, № 3.

УДК 634.0.5.001.572

К ВОПРОСУ О ПОСТРОЕНИИ МОДЕЛИ РАСЧЕТНОГО ДЕРЕВА ДЛЯ УСЛОВИЙ АРХАНГЕЛЬСКОЙ ОБЛАСТИ

В. М. СВИДЕРСКИЙ, В. Я. КАЗАКОВ, Р. Г. СМИРНОВ

Архангельский лесотехнический институт, СевНИИП

Исследована сучковатость ели и березы. На основе натурных измерений 110 срубленных деревьев ели и 80 деревьев березы математико-статистическими методами с помощью ЭВМ «Напри-С» вычислены параметры уравнений связи для 19 параметров дерева.

Натурные измерения деревьев проведены в еловых насажденчих восьми лесхозов Архангельской области, равномерно размещенных в северной и средней подзонах тайги.

танги. В полевых условиях у поваленных деревьев измеряли: диаметр ствола (в коре) на высоте груди $(D_{1,3})$, см; диаметры ствола на уровне среза и на границах десятых долей высоты $(D_1, D_2, D_3, ..., D_9)$, см; высоту дерева от уровня среза до окончания кроны (H), м; высоту дерева от уровня среза до плоскости наибольшей ширины кроны (H_{R}) , м; длину вершинной (неделовой) части ствола до диаметра 8 см (H_{R}) , м; длину вершинной части ствола до диаметра 6 см (H_{R}) , м; протяженность кроны от первого сухого сучка диаметром 10 мм и более, считая от уровня среза $(H_{K,C})$, м; протяженность кроны от первого сучка (H_{K}) , м; наибольший диаметр кроны (H_{K}) , м; наибольшее и наименьшее расстояние от продольной осл дерева до гранины кроны в наиболее развитом ее участке $(A \cup E)$

цы кроны в наиболее развитом ее участке (A и B), м. Отдельно по секциям через 0,1 H дерева учитывали число сучьев (N), число мутовок (K) и вес кроны дерева ($Q_{\rm KP}$), кгс, который определяли путем взвешивания обрубленных сучьев на весах-динамометре. На середине каждой секции у пяти сучьев измеряли угол врастания (δ), град и диаметры вдоль и поперек ствола (α и b), см.

Учитывали породный состав и полноту, класс бонитета, возраст, средние диаметр и высоту деревьев. Камеральным путем определяли: количество сучьев, мутовок и вес сучьев — сложением значений этих параметров на секциях через 0,1 H; средние значения угла врастания и диаметров поперечного сечения сучьев по каждому участку — как средние арифметические из числа сучьев.

Значения коэффициента формы ствола q_2 , $D_{1,3}$,..., D_9 , H, $H_{\rm K}$, $H_{\rm B}$, $D_{\rm K}$, A и B, N, K, $Q_{\rm KP}$ среднего дерева каждой ступени толщины, средние значения угла врастания (δ) и диаметров сучьев (a и b) определяли как средние арифметические; расстояние между мутовками для одного участка — по формуле $L_i = \frac{0.1H}{K_i}$ и для всего дерева — $L = \frac{H}{K}$; число сучьев в мутовке — $N_{mi} = \frac{N_i}{K_i}$; площадь основания сучка $F_{\rm c} = \frac{\pi d^2}{4}$; площадь оснований сучьев в мутовке — $F_m = F_{\rm c} N_{mi}$; площадь оснований всех сучьев — $F = F_{\rm c} N$; плотность сучьев на поверхности ствола — $P_i = \frac{N_i}{S_i}$; площадь поверхности ствола на участке — $S_i = \pi 0.1 H$ $\frac{D_1 + D_2}{2}$; разряд высоты дерева — по таблицам [3].

Расчетные деревья брали в хвойных лесонасаждениях возраста 130—250 лет с участием ели в составе от 0,2 до 1,0; преобладали древостои состава 8Е2Б, IV класса бонитета, с полнотой 0,7, тип леса — черничник.

Обмерено 110 деревьев ели с диаметрами от 12 до 52 см, что составляет 11 ступеней толщины (через 4 см), и 80 деревьев березы с диаметрами от 12 до 40 см, что составляет 8 ступеней толщины.

На основе параметров среднего дерева по ступеням толщины математико-статистическими методами парной корреляции отдельно для каждой породы получены уравнения регрессии абсолютных значений параметров кроны дерева в зависимости от диаметра на высоте груди (табл. 1). Параметры уравнений, по которым вычислены

Таблица 1

Уравнение связи	Коэффи- циент корреля- ции (отношение	Средняя арифметиче- ская величина функции	Основная ошибка уравнения
Ель	, , ,		
$\begin{split} H &= -4,023 + 1,2453D - 0,01244D^2 \\ H_{\text{K,c}} &= 4,003 + 0,998D - 0,0088D^2 \\ H_{\text{Kp}} &= 2,49 + 0,370D \\ H_{\text{BS}} &= 4,22 - 0,043D \\ H_{\text{DS}} &= 2,71 - 0,024D \\ N &= 57,387 + 7,4361D - 0,0356D^2 \\ K &= 19,32 + 2,390D \\ \delta &= 102,914 + 0,212D - 0,0057D^2 \\ Q_{\text{K}} &= 43,996 - 17,191 \cdot D - 0,4826D^2 - 0,004D^3 \\ a &= 0,290 + 0,1131D - 0,0011D^2 \\ b &= 0,518 + 0,0832D - 0,0007D^2 \\ A_{\text{Kp}} &= 0,338 + 0,098D - 0,00075D^2 \\ E_{\text{Kp}} &= 0,009 + 0,096D - 0,00079D^2 \\ L &= 11,39 + 1,115D - 0,0199D^2 \\ N_{m} &= \frac{92,741}{2} - 0,01D \\ F_{\text{C}} &= 0,210 + 0,153D \\ F_{m} &= 1,40 + 0,350D \\ F &= -682,67 + 66,647D \\ P &= 1,557 + \frac{8,18}{D} \end{split}$	0,987 0,994 0,955 0,919 0,896 0,948 0,921 0,534 0,977 0,986 0,988 0,968 0,968 0,961 0,727 0,601 0,974 0,950 0,990	21,02 17,41 14,36 2,85 1,94 252,27 95,36 103,00 191,81 2,59 2,36 2,57 2,14 23,54 2,44 5,07 12,55 1437,90	0,942 0,618 1,456 0,231 0,150 21,845 12,690 10,327 28,430 0,091 0,079 0,164 0,112 3,194 0,161 0,141 1,448 117,58 0,238
Береза	' 1	1	
$H = 0,498 + 0,9223D - 0,0081D^{2}$ $H_{K,C} = 6,621 - 0,122D + 0,009D^{2}$ $H_{Kp} = 4,989 + 0,042D + 0,0042D^{2}$ $H_{BN} = 6,593 - 0,223D + 0,004D^{2}$ $H_{DN} = 11,344 - 1,122D + 0,046D^{2} - 0,0006D^{3}$ $N = 111,584 - 7,612D + 0,169D^{2}$ $K = 44,372 - 2,405D + 0,068D^{2}$ $\delta = 59,787 - 2,103D + 0,046D^{2}$ $Q_{K} = 43,081 - 5,498D + 0,243D^{2}$ $a = -4,424 + 0,745D - 0,013D^{2}$ $b = -2,080 + 0,416D - 0,006D^{2}$ $A_{KP} = 0,447 + 0,1246D + 0,0013D^{2}$ $E_{KP} = 0,649 + 0,0709D - 0,00032D^{2}$ $L = 3,133 + 1,938D - 0,026D^{2}$ $N_{m} = 2,680 - 0,141D + 0,003D^{2}$ $F_{C} = -10,252 + 1,547D - 0,002D^{2}$ $F_{m} = -7,117 + 1,408D - 0,016D^{2}$ $F = 108,65 - 3,117D + 0,938D^{2}$ $P = 1,492 - 0,085D + 0,002D^{2}$	0,994 0,972 0,951 0,657 0,859 0,944 0,994 0,994 0,838 0,910 0,932 0,984 0,868 0,907 0,771 0,748 0,980 0,775	18,17 10,38 9,23 3,79 2,99 41,41 32,79 39,66 35,82 5,44 3,97 2,70 2,23 33,50 0,99 13,45 16,85 725,90 0,50	0,500 0,796 0,899 0,373 0,182 5,664 5,152 1,444 1,876 0,806 0,427 0,208 0,087 3,164 0,089 3,407 4,556 85,192 0,095

абсолютные значения параметров кроны в среднем на одно дерево (по ступеням толщины), рассчитаны на 9BM «Наири-С».

Из табл. 1 видно, что как для ели, так и для березы большинство параметров кроны дерева в зависимости от диаметра на высоте груди характеризуется уравнениями параболы второй степени.

При этом за основные принимали такие уравнения, которые имеют не только более высокое корреляционное отношение (или коэффициент корреляции), но и наименьший свободный член уравнения, чем ограничивалось влияние других факторов на исследуемые параметры. В полученных уравнениях связи большинство параметров кроны характеризуется высокими показателями коэффициентов корреляции (выше 0,9), что указывает на тесноту связей изучаемых закономерностей.

Оценка качества проведенных исследований путем сравнения с данными И. И. Гусева о длине живой кроны ели [1, с. 53] и Л. В. Коротяева о весе сучьев [2, с. 94]

показывает, что при аналогичной линейной связи максимальное отклонение вычисленных нами значений длины кроны от данных И. И. Гусева составляет от —5,05 до —5,66%, что при точности таксации леса, равной 10%, вполне допустимо. Максимальное отклонение данных о весе сучьев от данных Л. В. Коротяева при

Максимальное отклонение данных о весе сучьев от данных Л. В. Коротяева при аналогичной связи по кубической параболе выражается величинами от +4,84 до -16,78% и имеет наибольшие отклонения в ступенях толщины 16, 20 и 24 см.

Полученные нами параметры кроны характеризуют их варьирование, что весьма важно для проектирования лесозаготовительных машин. В частности, статистическими методами обработки исследований могут быть построены математические модели расчетных деревьев, которые послужат основой при эксплуатационных и прочностных расчетах процессов и элементов сучкорезных машин.

ЛИТЕРАТУРА

[1]. Гусев И. И. Строение и особенности таксации ельников Севера. М., «Лесная промышленность», 1964. [2]. Коротяев Л. В. Вес кроны еловых деревьев в лесонасаждениях Севера.— ИВУЗ, «Лесной журнал», 1959, № 5. [3]. Тюрин А. В., Науменко И. М., Воропанов П. В. Лесная вспомогательная книжка. М.—Л., Гослесбумиздат, 1956.

УДК 669.018.24

ИЗУЧЕНИЕ ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ

В. А. ОХИНЬКО

Воронежский лесотехнический институт

Изложены результаты эксплуатационных исследований надежности различных материалов применительно к подшипникам землеройных машин. Показано, что подшипники скольжения из АЧС-5 могут применяться вместо стандартных бронзовых при ремонте машин.

При освоении новых земель под лесные культуры в заболоченных местах или в засушливой местности необходимо проводить мелиоративные работы. Для выполнения этих работ, кроме специальных лесохозяйственных машин и оборудования, применяют землеройные машины общего назначения (экскаваторы, тракторы, бульдозеры, скреперы и др.).

Полное использование возможностей, заложенных в конструкциях этих машин, как правило, не представляется возможным из-за резкого износа ряда деталей, что сокра-

щает срок нормальной эксплуатации машин.

В ходовой части машин одним из слабых узлов являются подшипники скольжения опорных и поддерживающих катков, в поворотной платформе экскаваторов — опорные ролики, у скреперов — подшипники скольжения поворотных шарниров динща боковых стенок ковща, рычагов заслонки ковща. Эти узлы работают в условиях, когда в сопряженные трущиеся детали неизбежно попадает абразивная пыль. В особых условиях работают машины в Средней Азии, где в летнее время температура воздуха достигает 45—57°С. В этом случае масло (солидол) быстро разжижается, и сопряжения работают фактически без смазки.

В настоящей работе исследуется возможность применения антифрикционного серого чугуна (АЧС-5 ГОСТ 1585—70) как подшипникового материала при ремонте машин в эксплуатационных условиях Сырдарынской передвижной механизированной колонны № 2 (ПМК-2) Узбекской ССР, выполняющей мелиоративные работы. Химический состав чугуна (%): углерода — 4,08; марганца — 12,35; кремния — 3,5; серы —

до 0,015 и фосфора — до 0,14.

При ремонте землеройных машин применяли втулки из стандартной броизы марки Бр. АЖ 9-4 (ГОСТ 1628—60). На каждый опытный исследуемый узел одновременно устанавливали втулки из АЧС-5 и Бр. АЖ 9-4, изготовленные в ремонтно-механической мастерской ПМК-2. Оси для испытуемых машин применяли как стандартные с твердостью НRС 45—55, так и термически не обработанные (сырые). Узлы трения смазывали в соответствии с техническими условиями завода-изготовителя на эксплуата-

Для определения величины и мест износа учитывали сравнительный характер износа пары втулка — ось АЧС-5 и стандартных деталей идентичного узла трения. Из-

^{10 «}Лесной журнал» № 1

٦		
	C,	3
	~	
	Z	
	7	
١	c	
	Ç	3
E	_	4

												1 a Own ha 1
Инвен- тар-	Марка	Vaca Tootha	Времи работы	работы	Матернал		Износ, мм		Относи	Относительная износо- стойкость	-0201	Состояние
помер	Машины		мес	TMC. 1	втулок	втулки	1100	пары	втулки	1120	пары	поверхности оси
30	9-1252B	Опорные катки гусеничного хода	13	3,0	Чугун Бронза	1,07	0,65	1,72	3,78 1,0	3,94	3,85	HRC 45—55
		Поддерживаю- щие ролики гу- сеничного хода	133	3,0	Чугун Бронза	0,25	0,15	0,40	3,56	4,0 1,0	3,72 1,0	â
<u> </u>		Опориые ролики поворотной плат- формы	13	3,0	Чугун Бренза	0,55 2,8	0,7 1,95	1,25 4,75	5,1 1,0	2,79 1,0	3,8	Термически не обработанные
22	9-652B	Опориые катки гусеничного хода		3,0	Чугун Бронза	0,75 3,15	2,63	1,38	4,2	3,38	3,83	HRC 45—55
		Поддерживаю- щие ролики гу- ссничного хода	13	3,0	Чугун Бронза	0,13 0,42	0,06	0,19	3,23	3,83	3,42	•
31	Бульдозер 492 А	Поддерживаю- щие ролики гу- сеничного хода	22	4,35	Чугун Бронза	0,15 0,95	0,18 0,78	0,33 1,73	6,33 1,0	4,33	5,24 1,0	Термически пе обработанные
08	Скрепер Д-374Б	Поворотные шарииры диища боковых стенок ковша	22	4,35	Чугун Бронза	1,15	2,2 3,85	3,35 8,05	3,65 1,0	1,75	2,4	То же
		Рычаг заслонки ковша	22	4,35	Чугун Бронза	0,65 2,3	1,1	1,75	3,54	2,68	3,0	£

нос деталей замеряли при разборке узлов трения через определенный промежуток времени. Линейные размеры определяли в заранее установленных местах, одним и тем же измерительным инструментом. Диаметр каждой оси и втулки измеряли 18 раз. При определении износа брали среднее значение. Детали перед замером тщательно промывали в солярке и протирали.

Замеры деталей выполняли с неоднократной повторностью при помощи штангенциркуля (0,02 мм), индикаторного нутромера и микрометра с ценой деления 0,01 мм.

Фактический износ детали определяли как разность между проектным и средним значением размеров изношенной детали. Результаты фактического износа сопряженных деталей при определенной продолжительности их работы и сравнительная относительная износостойкость сведены в табл. 1.

В среднем эксплуатационная надежность машин от применения АЧС-5 вместо

бронзы в указанных узлах увеличивается более чем в 3,5 раза.

Эксплуатационные испытания показали, что бронзовые втулки при работе в паре трения даже одинаковых узлов имеют различный износ, а следовательно, и разный срок службы, что усложияет и без того тяжелые условия эксплуатации машии. Так, например, срок службы втулок и осей крайних катков ходового механизма экскаватора в 2 раза, следующих за ними катков — в 1,5 раза ниже, чем у средних катков и т. д. Эти условия улучшаются при замене бронзовых втулок чугунными, которые изнашиваются более равномерно.

Стоимость чугунного литья в 8—10 раз меньше, чем бронзового. Даже такой небольшой организации, как Сырдарынская ПМК-2, применение чугуна АЧС-5 дало

экономический эффект почти 8 тыс. р.

Таким образом, эксплуатационные испытания втулок, проведенные в Сырдарынской ПМК-2, подтвердили полную целесообразность применения антифрикционного серого чугуна в качестве материала для подшипников скольжения вместо дорогостоящей и дефицитной бронзы.

УДК 519.241.2:631.517

О ВЕРОЯТНОСТНОЙ ОЦЕНКЕ РАБОТЫ ЛЕСНОГО ДИСКОВОГО КУЛЬТИВАТОРА

А. А. ГОЙДЕНКО, Х. М. АНДРУХАЕВ

Адыгейский педагогический институт

Определена вероятностная оценка числа растений, повреждаемых культиватором КЛБ-1,7 при работе на вырубках в горных условиях, в зависимости от распределения растений в ряду, размера защитной зоны и отклонений траектории культиватора от линин защитной зоны. Указаны пути снижения числа повреждаемых растений.

На нераскорчеванных вырубках Северного Кавказа лесные культуры создают полосами поперек склонов, в пространстве между крупными камнями. Растения высаживают с помощью лесопосадочных машин СВН-1 в один ряд. В силу искривленности полос и влияний микрорельефа на посадочный агрегат, возникает отклонение растений от теоретической осевой линии ряда. Поэтому при проведении механизированного агротехнического ухода культиваторами КЛБ-1,7, для защиты лесных культур от повреждений рабочими органами, обычно оставляют необработанную зону шириной 25—30 см с одной стороны ряда, которая затем обрабатывается вручную. Следовательно, важно определить минимальную величину защитной зоны и уменьшить ее до размеров, обусловленных требованиями агротехники, а также установить допустимые числовые характеристики процесса культивации.

В целях установления закона распределения культурных растений на вырубках в Майкопском лесокомбинате нами проведены эксперименты по определению отклонения x_p (l: растений от осевой линии ряда. Условие нормальности распределения растений в ряду соблюдается, так как критерий Пирсона $\chi^2=12.9$ см² при предельном значении $\chi^2_{\pi}=14.1$ см², а критерий А. Н. Колмогорова $P(\lambda)=0.78>0.01$. Зависимость $x_p(l)$ — процесс случайный. С некоторым приближением можно считать, что он протекает в вероятностном отношении однородно при изменении параметра l, поэтому отклонение растений $x_p(l)$ от осевой линии ряда рассматриваем как стационарную случайную функцию. Известно, что для такой функции математическое ожидание m_{x_p} = const и дисперсия $D=\varepsilon^2=$ const. Графически математическое отклонение ра-

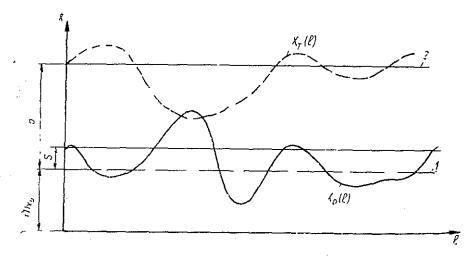


Рис. 1. Отклонение растений $x_{\rm p}$ (l) и траектории культиватора $x_{\rm T}$ (l) от осевой линии вдоль ряда.

1 — средняя линия рядка; 2 — граница защитной зоны.

стений от осевой линии ряда представляет собой ординату средней линии ряда. От-клонение растений от средней линии (рис. 1)

$$x_{\mathbf{p}}\left(l\right)-m_{x_{\mathbf{p}}}=x_{\mathbf{p}}^{0}\left(l\right),$$

т. е. представляет собой центрированную случайную функцию, математическое ожида-

$$M\left[x_0^0(l)\right] = 0.$$

Предположим, что агротехническими условиями предусматривается допуск $\pm S$ на отклонение растений от осевой линии ряда. Тогда зона /2S/ является областью, за пределами которой отклонения ординат невозможны. Вероятность превышения заданного уровня $\pm S$ для центрированного нормального процесса может быть выражена так:

$$P_{\rm p} = 1 - 2\Phi\left(\frac{S}{\sigma_{\rm p}}\right),\tag{1}$$

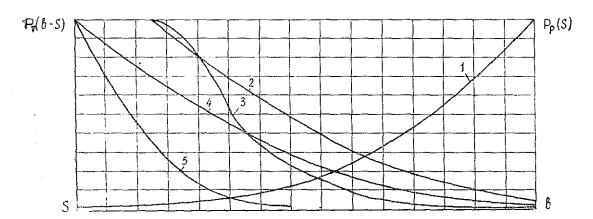


Рис. 2. График для определения вероятности отклонения подрезаемых растений. $t_{\rm p} = \sigma_{\rm p} = 19,22$ см, b = 30 см; $2 - \alpha_{\rm g} = 13,05$ см, b = 25 см; $3 - \sigma_{\rm g} = 7,7$ см, b = 25 см; $4 - \sigma_{\rm g} = 13,05$ см, b = 30 см; $5 - \sigma_{\rm g} = 5,2$ см, b = 30 см.

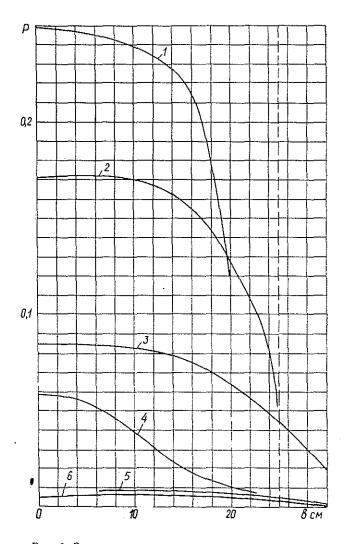


Рис. 3. Влияние размеров защитной зоны и значений $\sigma_{\rm p}$ и $\sigma_{\rm k}$ на вероятность подрезания растений. $I-\sigma_{\rm k}=13.05$ см, $\sigma_{\rm p}=10.22$ см, b=20 см; $2-\sigma_{\rm k}=13.05$ см, $\sigma_{\rm p}=10.22$ см, b=25 см; $3-\sigma_{\rm k}=13.05$ см, $\sigma_{\rm p}=10.22$ см, b=30 см; $4-\sigma_{\rm k}=7.7$ см, $\sigma_{\rm p}=10.22$ см, b=25 см; $5-\sigma_{\rm k}=5.2$ см, $\sigma_{\rm p}=10.22$ см, b=30 см; $6-\sigma_{\rm k}=5.2$ см, $\sigma_{\rm p}=7.7$ см, b=30 см; $6-\sigma_{\rm k}=5.2$ см, $\sigma_{\rm p}=7.7$ см, b=30 см.

) це σ_p — среднее квадратическое отклонение растений от осевой линии ряда; P_p — относительная длительность превышения уровня $\pm S$ ординатами случайной функции.

По формуле (1) на основании конкретных значений $\sigma_{\rm p}$, определенных экспериментально, вычисляем вероятность отклонения растений от осевой линии ряда для уровней $\Delta Si,\ i=0,1,2,3\ldots$ и строим график вероятностей отклонения растений от осевой линии в зависимости от допуска S (рис. 2). Траектория культиватора представляет собой также случайную функцию. Известности от допуска S (рис. 2).

Траектория культиватора представляет собой также случайную функцию. Известно, что между траекторией культиватора и направлением криволинейных рядов существует довольно слабая связь. Характеристикой этого рассогласования может служить величина σ_{κ} — среднее квадратическое отклонение траектории от средней линии, которой служит граница защитной зоны. Вероятность того, что внутренний диск

культиватора пересечет линию, отстоящую от ряда на расстоянии S, выражается формулой, аналогичной (1)

$$P_{\tau} = 1 - 2\Phi (Z^{0}),$$
 (2)
 $Z^{0} = \frac{b - S}{\sigma_{tr}}.$

где

Пользуясь формулой (2), строим график вероятностей отклонения культиватора от осевой линии ряда (рис. 2) для конкретных значений \mathfrak{s}_{κ} и величины защитной зоны b. Полученные графики вероятностей отклонения растений и культиватора от осевой линии ряда используем для вычисления вероятности подрезания растений. Вероятность того, что внутренний рабочий орган культиватора не отклонится и будет точно копировать ряд, равна P_{τ_n} , а вероятность отклонения растений на величину S при этом равна $P_{\mathfrak{p}_n}$, следовательно, согласно правилу умножения вероятностей независимых случайных событий, вероятность подрезания растений

$$P(\mathbf{T}_{0}, \mathbf{p}_{0}) = P_{\mathbf{T}_{0}} P_{\mathbf{p}_{0}}. \tag{3}$$

Вероятность отклонения внутреннего диска культиватора на величину $S_1 - S_0$

$$P_{\mathsf{T}_{\mathsf{I}_{\mathsf{0}}}} = P_{\mathsf{T}_{\mathsf{I}}} P_{\mathsf{T}_{\mathsf{0}}} \,. \tag{4}$$

Вероятностная оценка числа растений, повреждаемых культиватором при его отклонении на $S_1 - S_0$,

$$P_{p_{10}} = P_{p_{1}} \left(1 - \frac{P_{p_{0}} P_{T_{0}}}{P_{p_{0}}} \right) - (P_{\tau_{1}} - P_{\tau_{0}}) = P_{p_{1}} \left(1 - P_{\tau_{0}} \right) (P_{\tau_{1}} - P_{\tau_{0}}). \tag{5}$$

Таким образом, полная вероятность подрезания растений

$$P = P(\mathbf{r}_{0}, \mathbf{p}_{0}) + P_{\mathbf{p}_{i_{0}}} + P_{\mathbf{p}_{a_{1}}} + P_{\mathbf{p}_{a_{2}}} + \cdots + P_{\mathbf{p}_{l_{i}-1}}.$$
 (6)

По формуле (6) определяем вероятность повреждения растений при различной ширине защитной зоны (табл. 1).

Из данных таблицы можно сделать вывод, что при проведении механизированных агротехнических уходов культиватором КЛБ-1,7 защитная зона должна быть не менее 30 см.

Определим, что больше влияет на число подрезанных растений: повышение точности их расположения относительно осевой линии ряда или повышение точности движения культиватора. Для этого построим графики полной вероятности подрезания

Таблица 1

Ширина защитной зоны <i>b</i> , см	Полная вероятность подрезания растений при $\sigma_{\rm p}=10{,}22$ см, $\sigma_{\rm K}=13{,}05$ см
30	0,0842
25	0,1705
2 0	0,2471

растений при различных значениях σ_p и σ_κ (рис. 3), из которых следует, что наибольшее значение имеет повышение точности движения культиватора.

Установим допустимое значение σ_{κ} в зависимости от допуска $\pm S$ на величину защитной зоны. Исходя из формулы

$$P=2\Phi\left(\frac{S}{a}\right)$$

можно узнать, какая часть всех возможных значений функции может оказаться в заданных пределах при $\Phi(Z)=0,5P$. Обозначим далее через Z_{π} такой аргумент Z функции Лапласа $\Phi(Z)$, для которого она равна $0,5P_3$, где P_3 — заданная вероятность сохранения допуска S. При заданном P_3 значение аргумента Z_{π} можно найти по таблицам значений функции Лапласа. Так как

$$Z_{\pi} = \frac{S}{|\sigma_{\kappa}|_{\pi}}$$
,

то допустимое среднее квадратическое отклонение случайной величины $x_{\rm T}(l)$ при заданном допуске S и вероятности P_3 его сохранения равно

$$|\sigma_{K}|_{A} = \frac{S}{Z_{A}}.$$

Например, при $S = \pm 10$ см; $Z_A = 1,3$; $P_3 = 0.8$ $\sigma_K = 7.7$ см.

УДК 634.0.383.4: 625.7.033.4

.№ 1

ДИСКРЕТИЗАЦИЯ ЗАПИСЕЙ МИКРОПРОФИЛЕЙ ЛЕСОВОЗНЫХ ДОРОГ

Н. И ПЛУЖНИКОВ

Хабаровский политехнический институт

Приведена методика выбора интервала дискретности при записях микропрофилей лесовозных автомобильных дорог с учетом сглаживающей способности пневматических шин.

Микропрофиль поверхности автомобильных дорог как факгор, определяющий возмущение колебаний автомобиля, в настоящее время широко используется для многих практически важных расчетов плавности хода, устойчивости движения, нагруженности агрегатов автомобиля. Для получения статистических характеристик микропрофиля используются профилографы многочисленных конструкций. В одних предусмотрена непрерывная запись микропрофиля, другие записывают его в точках, удаленных друг от друга на определенное расстояние $\mathcal{A}l$. При цифровой обработке профилограмы с непрерывной записью необходимо выполнить их дискретизацию. Эта операция обычно производится через равные интервалы. Задача заключается в правильном выборе интервала дискретности при непрерывной и расстуяния Δl при дискретной записях микропрофиля. С одной стороны, при выборках (стсчетах) в слишком близко расположенных точках получатся коррелированные данные, число ко-

торых будет избыточно, что неизбежно вызовет увеличение объема расчетов. С другой стороны, при выборках в слишком далеко отстоящих друг от друга точках возможно смешение низко- и высокочастотных составляющих исходного процесса. Это явление называется маскировкой частот. При интервале между последовательными отсчетами Δl скорость дискретизации равна 1 / А 1. Для того чтобы дискретная реализация содержала все те же частоты, что и исходный непрерывный сигнал, на каждый цикл соответствующего колебания должно приходиться по меньшей мере два отсчета [1]. Поэтому наиболее высокая частота, которая может быть выделена при дискретизации с интервалом Δl , равна $^{1}/_{2}$ $^{\Delta}$ \dot{l} . Содержащиеся в исходном сигнале более высокие частоты будут свернуты в диапазон 0-1/2 Δ l и смещаются с более низкими частотами этого диапазона. Граничная частота $\lambda_c = {}^{1}/_{2} \ \Delta t$ называется частотой Найквиста, или частотой свертывання. Для исключения влияния маскировки рекомендуется выбирать частоту λ_c в 1,5-2 раза больше максимальной ожидаемой частоты в спектре исследуемого сигнала. Как известно, автомобильное колесо с иневматической шиной обладает сглаживающей способностью, выражающейся в том, что в пределах зоны контакта действительное вертикальное воздействие дороги на шину не пропорционально смещению опорной поверхности в данной точке. Исследования показывают, что сглаживание микропрофиля гораздо интенсивнее в области мелких неровностей, чем в области больших [3]. С увеличением размера шин их сглаживающая способность проявляется сильнее. В работе [4] отмечается,

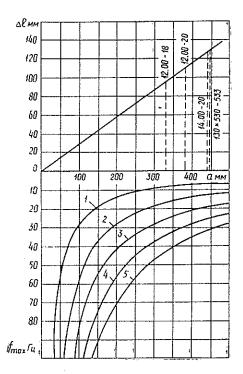


Рис. 1. Зависимость шага дискретности и максимальной частоты воздействия микропрофиля от длины отпечатка шины.

$$1 - V_a = 10 \text{ km/H}; 2 - 20; 3 - 30; 4 - 40; 5 - 50 \text{ km/H}.$$

ІЗВЕСІИЯ ВЫСШИХ УЧЕВНЫХ ЗАВЕДЕН

1977

что если длина волны неровности меньше длины контакта пневматической шины с покрытием, вертикальные колебания колеса не возникают. Такая неровность приводит только к деформациям шины. Следовательно, граничная частота будет определяться длиной отпечатка шины. При номинальной статической нагрузке на ось длина отпечатка шины может быть приблизительно определена по формуле В. Л. Бидермана [2]

$$a = 2 \sqrt{(0,1 \div 0,11) H [D - (0,1 \div 0,11) H]}$$

где D — наружный диаметр шины;

H — высота профиля шины.

Из сказанного ранее следует, что

$$\Delta I = \frac{1}{2\lambda_c} = \frac{1}{(3 \div 4) \lambda_{max}},$$

 $\lambda_{c,} \; \lambda_{max}$ — соответственно граничная и максимальная ожидлемая волновые частоты микропрофиля, 1/м.

Используя связь между волновой частотой микропрофиля и круговой частотой воздействия, найдем максимальную ожидаемую частоту воздействия микропрофиля на колеса автомобиля

$$f_{max} = \lambda_{max} V_{a},$$

где V_a — скорость поступательного движения оси колеса автомобиля. Результаты расчетов для шин, используемых на лесотранспортных машинах, представлены на рис. 1. Из графика видно, что шаг дискретности при снятии микропрофилей лесовозных дорог не должен превышать 9-13 см в зависимости от размера шин. Максимальная ожидаемая частота воздействия микропрофиля зависит от скорости движения и при $V_a=50\,$ км/ч не превышает 42 $\,$ Гц. Следовательно, дороги низших категорий с ограниченной скоростью движения не в состоянии возбудить колебаний высокой частоты. Если возмущение регистрируется как функция времени, то интервал дискретности при обработке профилограммы можно найти по формуле

$$h=\frac{1}{(3\div 4)f_{max}},$$

где \int_{max} определяется по рис. 1.

Например, для шины 12,00—20 $\Delta l=0.1$ м, при $V_3=30$ км/ч $f_{max}=22$ Гц. При конструировании измерительной и записывающей аппаратуры, а также при обработке профилограмм (осциллограмм), необходимо учитывать приведенные требования к дискретизации исходного процесса.

ЛИТЕРАТУРА

[1]. Бендат Дж., Пирсол А. Измерение и анализ случайных процессов. М., «Мир», 1974. [2]. Бидерман В. Л. Автомобильные шины. М., Госхимиздат, 1963. [3]. Дмитриев А. А., Шупляков В. С., Яценко Н. Н. Особенности взаимодействия пневматической шины с микропрофилем дороги. — «Автомобильная промышленность», 1973, № 5. [4]. Коеssler P. Ebenheit und Griffigkeit aus der Sicht der Fahrzeugtechnik. — «Strasse und Autobahn», 1968, 19, № 9—10.

УДК 634.0.383.1.: 625,723

О РАСЧЕТЕ НЕЖЕСТКИХ ДОРОЖНЫХ ОДЕЖД С УЧЕТОМ УПРУГИХ И ПЛАСТИЧЕСКИХ ДЕФОРМАЦИЙ

Э. О. САЛМИНЕН

Ленинградская лесотехническая академия

Приводится методика расчета с применением ЭЦВМ. Сравниваются результаты расчета по методу Союздорнии, по методу упругих прогибов и по предложенной формуле с одновременным учетом упругих и пластических деформаций в период наибольшего увлажнения.

Исследование работы нежестких дорожных одежд лесовозных автомобильных дорог в стадин упруго-пластического деформирования показало [2], что осадка дороги под колесом автомобиля может быть определена как сумма упругой и пластической деформации по формуле

$$l = l_{y} + \sum l_{0} = \frac{(1 - \mu^{2})PD^{1}}{E_{0}} \left[\frac{\pi}{2} - \left(1 - \frac{1}{n^{3,5}} \right) \operatorname{arctg} \frac{nh}{D} \right] +$$

$$+ (\alpha + \beta \lg N) \frac{P^{2}D}{2A_{0}^{2}} \left[\frac{\pi}{2} - \left(1 - \frac{1}{n^{6}} \right) \operatorname{arctg} \frac{n_{0}h}{D} - \left(1 - \frac{1}{n_{0}^{6}} \right) \frac{n_{0}h}{D} \right],$$
 (1)

 I_y — упругая деформация дороги под колесом; Σ I_0 — пластическая деформация; μ — коэффициент Пуассона; P— удельное давление колеса на дорогу; D— диаметр эквивалентного круга; E_0 — модуль упругости материала основания;

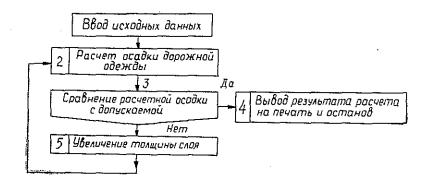
$$n=\sqrt{\frac{E_1}{E_0}}$$

 E_1 — модуль упругости материала покрытия; h — толицина дорожной одежды; α н β — эмпирические коэффициенты, учитывающие повторность приложения на-

N — количество нагрузок, прошедших за расчетный период;

 A_0 — число твердости материала основания;

$$n_0 = \sqrt{\frac{A_1}{A_0}}$$
;


 A_1 — число твердости материала покрытия.

Формулу (1) можно использовать для расчета толщины дорожной одежды изусловия

$$l < l_{\text{non}}.$$
 (2)

Предложенный ранее метод проверки прочности дорожной одежды по накоплению остаточных деформаций [1] также основан на приведенной зависимости, но он предусматривал расчет толщины дорожной одежды по упругим прогибам, а затем проверку по пластическим деформациям.

Таким образом, формула (1) расчленялась на две части: для упругой и пластической деформации. В расчете не учитывалось одновременное влияние упругой и пластической деформации на работу дорожной одежды. Кроме того, при выводе расчетных зависимостей необходимо было ввести понятие об эквивалентной прочности для упругих и пластических деформаций.

При работе дорожной конструкции в период максимального увлажнения упругие и пластические деформации происходят одновременно, поэтому при расчете толщины дорожной одежды учитывать их также следует одновременно. Ввиду сложности формулы (1) расчет по ней можно выполнять с помощью ЭВМ.

Блок-схема расчета представлена на рис. 1.
Результаты расчета для графийных дорог на различных типах земляного полотна по методам Союздорнии, МАДИ и по формуле (1) приведены в табл. 1*.

Таблица 1

Грунт земляного		Союздорнии МАДИ (1)		
покрытия	Материал покрытия			по формуле (1)
Суглинок	Неподобранная гра- вийная смесь	40	50	53
Супесь	То же	33	43	40
n	Оптимальная гра- вийная смесь	27	30	25

Результаты расчета показывают, что при тяжелых грунтах земляного покрытия расчетная толщина дорожной одежды, найденная по формуле (1), выше, чем по другим сравниваемым методам, а при легких грунтах — ниже.

ЛИТЕРАТУРА

[1]. Корчунов Н. Г., Салминен Э. О. К вопросу учета остаточных деформаций при расчете одежд лесовозных автодорог.— Научные труды ЛТА, 1970, № 122. [2]. Салминеи Э. О. Исследование осадок нежестких дорожных одежд лесовозных автомобильных дорог в период максимального увлажнения. Автореф. Л., 1971, с. 18.

УДК 674.05.6.074.023

упрочнение дереворежущих инструментов СТЕЛЛИТОМ В СРЕДЕ АРГОНА

В. И. САНЕВ, И. Г. НАЗАРЕНКО, Л. А. ОБОРИН

Ленинградская лесотехническая академия

Приведены результаты опытной распиловки бревен диаметром 24 см круглыми пилами с клиновидным профилем зубьев, наплавленных стеллитом в среде аргона.

Повышение износостойкости режущих инструментов осуществляется различными способами: оснащением резцов металлокерамическими твердыми сплавами, электроконтактной подкалкой зубьев, наплавкой на режущие элементы литых твердых спла-BOB.

В связи с дефицитом на твердые сплавы в промышленности внедряется прогрессивный метод наплавки стеллита на рабочие элементы дереворежущего инструмента в среде аргона.

Наплавка стеллита марки ВЗК, ЦМТУ-08Т-42-68 на зубья пил с клиновидным профилем позволила получить вместо опилок технологическую стружку, пригодную для изготовления плит (ДСП, ДВП).

Пилы с наплавленными зубьями (рамные для рам РД75-6(7), круглые Д-710 мм для фрезерно-пильного агрегата, многопильных круглопильных станков Т-92 и Т-94 для распиловки бревен и брусьев) при испытаниях показали хорошие результаты. Точность распиловки древесины соответствует требованиям ГОСТа 8486-66 «Пиломатериалы хвойных пород».

^{*} В составлении программы и расчете на ЭВМ участвовал студент А. Г. Никифоров.

Таблица І

Номер	Место	Средняя толщина		ліцинность а. мм	Средняя толщина М 10 брусьев и ее
бруса	замера	бруса, м м	вдоль	поперек	статистические характеристики
1	Верх Низ	180,4 181,3	1,1 0,8	0,9	M = 180,9
2	Верх Низ	181,0 181,5	0,7 1,0	0,5	σ = ∓ 0,707
3	Верх Низ	180,9 181,5	0,7 0,9	0,6	$v=\mp 0.39\%$
4	Верх Низ	179,≒ 180,5	1,2 0,8	0,7	$m=\mp 0.158$
5	Верх Низ	180,0 181,2	1,4 1,1	1.2	$P = \mp 0.087\%$
6	Верх Низ	181,4 180,8	0,8 1,2	0,6	
7	Верх Низ	182,0 181,2	0,6 0,9	0,8	
8	Верх Низ	180,5 181,2	I,1 1,3	0,7	
9	Верх Низ	181,4 182,2	1,4 1,2	0,8	
10	Верх Низ	179,2 180,5	1,6 0,9	1,3	

В табл. 1 приведены результаты опытной распиловки бревен диаметром 24 см круглыми пилами с клиновидным профилем зубьев на фрезерно-пильном агрегате конструкции ЦНИИМОДа. Режимы работы агрегата: скорость подачи до 52 м/мин, скорость резания 53 м/с, поставы при распиловке 22—180—22 мм.
Из табличных данных видно, что точность распиловки пилами с зубьями, на-

плавленными стеллитом, соответствует требованиям. Износостойкость зубьев пил, наплавленных стеллитом в среде аргона, более чем в два раза выше, чем у пил из легированной стали марки $9X\Phi$.

Проведенные исследования твердости зоны и микроструктуры наплавки позволяют сделать вывод, что нагрев зубьев в среде аргона обеспечивает получение высоких механических свойств инструмента, хорошее качество сплавления основного металла со стеллитом и отсутствие микрораковин в зоне наплавки.

Наплавленный слой восстанавливается при аварийных износах повторной наплав-

кой, хорошо затачивается шлифовальными кругами из электрокорунда.

Создание в инструментальных цехах лесопильно-деревообрабатывающих предприятий специализированных участков по наплавке дереворежущего инструмента литыми гвердыми сплавами позволит значительно повысить его эффективность.

1977

УДК 621.923: 676.2.053.4

высокопроизводительная обработка КАЛАНДРОВЫХ ВАЛОВ

К. И. ДЕМЬЯНОВСКИЙ, Б. М. ЦЕНЦИПЕР

Архангельский лесотехнический институт

Приведены краткие сведения о предложенной авторами технологии обработки каландровых валов, включающей процесс шлифования и обточки валов лезвийным инструментом, оснащенным эльбором-Р. По сравнению с обычным шлифованием производительность обработки возросла в 3-4 раза.

К геометрической форме и качеству поверхности каландровых валов предъявляются высокие требования. От этих показателей, прежде всего, зависит качество бумажного полотна. В процессе эксплуатации валов искажается их геометрическая форма, а на рабочей поверхности возникают риски, огранка и другие дефекты. Основным методом восстановления каландровых валов, имеющих рабочую поверхность из отбеленного чугуна высокой твердости, является перешлифовка абразивными кругами. Опыт работы Архангельского ЦБК и других комбинатов показывает, что перешлифовку необходимо проводить через каждые 3—6 мес эксплуатации. Это ответственный, сложный по технике выполнения и длительный по времени

процесс. В зависимости от характера и глубины дефектов перешлифовка может зани-

мать до 25 рабочих смен.

Сотрудники кафедры теории механизмов и деталей машин АЛТИ провели на Архангельском ЦБК работу по изысканию возможности повышения производительности

обработки каландровых и других валов бумагоделательных машии.

Эффективность шлифования существенно зависит от характеристики шлифовальных кругов и режимов их работы. Нами изучена существующая технология перешлифовки валов, проведена опытная обработка валов кругами различных характеристик, а также кругами с прерывистой рабочей поверхностью. Значительное внимание уделено своевременной и качественной правке шлифовальных кругов. Учтен опыт перешлифовки валов, накопленный другими комбинатами. Даны рекомендации по повышению производительности шлифования. Вместе с тем нельзя не признать, что резервы повышения производительности перешлифовки каландровых валов в условиях комбината в значительной мере исчерпаны.

Известно, что на производительность и качество шлифования валов решающее влияние оказывает ряд факторов, в том числе глубина резания и удельное радиальное усилие резания $P_{\rm V}$. Так, точность шлифования, производительность и величина отжимов в системе СПИД находятся в прямой зависимости от радиальной силы, воз-

никающей при обработке.

Производительность шлифования каландровых валов в данных условиях обработки ограничивается точностью геометрической формы и требуемой шероховатостью поверхности. При определенной жесткости станка и вала требуемая точность, качество поверхности и производительность шлифования могут быть обеспечены лишь при условии, что радиальная сила не превышает некоторого определенного значения. С увеличением поперечной подачи, т. е. радиальной силы, возрастает и деформация технологической системы СПИД и более интенсивно изнашивается круг. Так, при шлифовании каландровых валов с поверхностным слоем из отбеленного чугуна кругами из карбида кремния значения P_{y} , равные 18—20 кгс/см, считают предельными [2].

Все стадии шлифования каландровых валов (черновые, получистовые, чистовые и отделочные) выполняют при определенных значениях радиальной силы, на Архангельском ЦБК — при ее предельном значении. Увеличить радиальную силу резания можно лишь за счет уменьшения ширины круга или изменения других параметров режима. Авторы статын и зам. главного механика комбината Р. А. Батурин разработали

принципиально новую технологию обработки каландровых валов, основанную на чере-довании процессов шлифования и резания металла лезвийным инструментом [1]. Резец, оснащенный эльбором-Р, устанавливают в специальном простом по конст-

рукции, резцедержателе, который с помощью шпилек крепится к вертикальной стенке корпуса подвижной шлифовальной каретки вальцешлифовального станка.

Обточку проводили при следующих параметрах резцов: углы в плане $\phi=45^\circ$ и $\phi_1=15^\circ$; передний угол $\gamma=-5 \div 10^\circ$; задний угол $\alpha=-10^\circ$; длина передней грани — 1,5 мм.

При обточке резцом скорость продольного перемещения каретки была уменьшена до 1,3—1,5 мм на оборот вала, а число оборотов вала — увеличено. Это достигалось регулированием числа оборотов электродвигателя.

Глубина резания составляла 0,1-0,15 мм. При обточке вала на указанных режи-

мах на его поверхности образуется «винтовая нарезка».

Делают либо один полный проход на всю длину вала, либо два прохода — вперед и назад. Расчеты и опыт подтвердили, что резец, оснащенный эльбором-Р, обеспечивает двойной проход без промежуточной заточки при длине рабочего участка вала до 7 м. После одного — двух проходов резец снимают с резцедержателя и производят обработку шлифовальным кругом (при обточке резцом круг с каретки не снимают). При шлифовании «гребешков» происходит интенсивный съем металла в связи с резким увеличением удельного давления круга на металл. После сошлифования «гребешков» вал вновь обрабатывают резцом и т. д.

Опыт показал, что обработку каландровых валов с включением лезвийного инструмента можно рекомендовать на стадиях предварительной и чистовой обработки.

При окончательной доводке используют только шлифовальные круги.

Внедрение новой технологии обработки каландровых валов повысило производительность обработки при высоком качестве в 3—4 раза.

ЛИТЕРАТУРА

[1]. Демьяновский К. И. и др. Разработка рекомендаций по обработке каландровых валов обточкой резцами из эльбора-Р. Научный отчет. 1975. [2]. Кучер А. М., Фейгин В. Б., Зингер Г. С. Технология шлифования валов бумагоделательных машин. М., 1973.

УДК 674.093.2

РАСКРОЙ ОТПАДА ОТ ПИЛОМАТЕРИАЛОВ ЭКСПОРТНОГО НАЗНАЧЕНИЯ НА ЧЕРНОВЫЕ ЗАГОТОВКИ ДЛЯ МЕБЕЛИ*

Л. С. СУРОВЦЕВА

Ленинградская лесотехническая академия

Исследована возможность переработки отпада от экспортных пиломатериалов III и IV сортов на черновые заготовки для мебели. В связи с этим на архангельских лесопильнодеревообрабатывающих предприятиях был проведен условный раскрой. Результаты исследования представлены в таблице и даны предварительные выводы о целесообразности такой переработки.

При распиловке сырья на экспортную пилопродукцию получается значительное количество низкосортных пиломатериалов (называемых отпадом), которые не отвечают требованиям, предъявляемым к экспортной продукции. Небольшую часть этих пиломатериалов используют на собственные нужды предприятий, основную же массу отгружают для внутрисоюзного потребления как обезличенную продукцию.

Пиломатериалы в чистом виде, без последующей обработки, практически не используются. Одно из основных направлений технического развития лесопильного производства — постепенный отказ от поставки потребителю обезличенных пиломатериалов и переход на поставку только специфицированных, высушенных, при необходимости строганых полуфабрикатов или готовых изделий.

В данной работе рассматривается вопрос о переработке отпада от экспортной

продукции на черновые заготовки для мебели.

На мебельное производство затрачивается около 5% всех пиломатериалов. В настоящее время потребность в заготовках из натуральной древесины достаточно велика и составляет в среднем 800—850 м³ на 1 млн. р. мебельной продукции (80% — из хвойных пород, 20% — из твердых лиственных)**.

^{*} Работа выполнена под руководством докт. техн. наук, проф. А. Н. Песоцкого. ** Производство заготовок. Библиотечка деревообработчика. М., «Лесная промышленность», 1969, с. 320.

Мебельная продукция весьма разнообразна по назначению, форме, следовательно, и черновые заготовки различаются по размерам и предъявляемым требованиям.

Размеры и требования к заготовкам для мебели регламентируются ГОСТом 9685—61. Предельные размеры заготовок по толщине — 19—70 мм, по ширине — 40—220 мм, по длине — 0,3—3,0 м. Преобладающие размеры черновых заготовок для мебели: толщина — 25; 32; 40 мм, ширина — 60; 70; 90; 130 мм, длина — 1,0—2,0 м. По качеству древесины и дефектам обработки заготовки разделяются на четыре

110 качеству древесины и дефектам обработки заготовки разделяются на четыре группы. Хвойные мебельные заготовки идут в основном под фанеровку или на закрываемые рамки, и их качество должно быть не ниже 3-й группы.

Заготовки для мебели допускается изготовлять клееными.

На архангельских лесопильных предприятиях были проведены эксперименты пораскрою отнада от экспортной продукции на черновые заготовки для мебельных изделий. Раскранвали пиломатериалы III и IV сортов по ГОСТу 8486—66, отдельно по породам: сосна, ель; двух групп толщин: средние и тонкие; трех групп длин: длинные (2,0—6,5 м), средние (1,0—1,75 м), короткие (0,5—0,9 м).

Каждую доску раскранвали по трем вариантам: только на цельные заготовки; на цельные заготовки и заготовки из склеенных по длине отрезков, из которых не выкранваются цельные; на заготовки из склеенных по длине всех бездефектных отрезков. При таком условном раскрое для всех вариантов сохраняется постоянный сорт, и, главное, постоянное качество доски и достигается оптимальная сравниваемость разных вариантов раскроя. Выход черновых заготовок для мебели из отпада экспортных пиломатериалов III и IV сортов по вариантам и породам дан в табл. 1.

Таблина 1

Порода	Сорт	Варнант	Выход заго по тол	
	пилома- терналов	раскроя	средних	тонких
Ель	III	1 2 3	43,7 62,6 63.5	51,8 65,4 66 , 0
	ΙV	1 2 3	33,2 45,5 45,9	27,7 36,6 37,5
Сосна	III	1 2 3	53,8 68,4 70,2	50,9 60,3 60,8
×	IV	1 2 3	35,9 46,8 47,0	21,3 26,0 26,2
Средние взвешенные данные		1 2 3	43,6 59,4 60,3	43,9 54,5 55,1

Примечание. Общий отпад от экспортной пилопродукции принят за 100%.

Выход заготовок по всем вариантам из досок III сорта выше, чем из IV (для средних заготовок — на 10.5—23.2%, для тонких — на 24.1—34.6%). Выход цельных заготовок, особенно тонких, из пиломатериалов IV сорта низкий.

Выход цельных заготовок, особенно тонких, из пиломатериалов IV сорта низкий. Повысить выход черновых заготовок можно за счет склеивания отрезков, из которых не выкраиваются цельные заготовки. При этом выход средних заготовок повышается на 12,3% (ель) и 10,9% (сосна), тонких — на 8,9% (ель) и 4,7% (сосна). Наибольший выход черновых заготовок для мебели получается при раскрое от

Наибольший выход черновых заготовок для мебели получается при раскрое отпада по 3-му варианту. Средневзвешенный выход заготовок средних толщин составил 60,3%, тонких — 55,1%.

Выход мебельных заготовок средних толщин из сосны на 5,8—10,1% (III сорт)

и 1,1—2,7% (IV сорт) выше, чем из ели.

Для тонких мебельных заготовок выход из еловых пиломатериалов на 0,9—5,2% (III сорт) и 6,4—11,3% (IV сорт) по рассматриваемым вариантам выше, чем из сос новых досок.

Отпад от пиломатериалов экспортного назначения средней и тонкой групп тол щин, III и IV сортов можно использовать для производства черновых мебельных за готовок, причем наибольший выход может быть получен при раскрое по 3-му вариан

ЛЕСНОЙ ЖУРНАЛ

1977

УДК 634.0.907

О РЕКРЕАЦИОННОМ ИСПОЛЬЗОВАНИИ ЛЕСОВ

Л. И. ИЛЬЕВ, Р. Н. ГОРДИЕНКО, Т. М. КУШНЕРОВА

ЛЬВОВСКИЙ ЛЕСОТЕХНИЧЕСКИЙ ИНСТИТУТ

Рассматриваются возможные направления взаимной увязки интересов развития туризма и максимального сохранения лесной обстановки.

В современных взаимоотношениях общества с окружающей средой решающее значение имеет возрастающая роль рекреационного использования природы и в том числе лесов.

Не повторяя общензвестные положения о многогранной роли лесов в жизни общества, следует отметить очень важную санитарно-гигиеническую роль зеленых древостоев (выделение кислорода и поглощение углекислоты, очистка воздуха от пыли, вредных газов, способность к ионизации воздуха, фитонцидность многих видов деревьев и т. д.), высокую эстетическую ценность лесных массивов, создающих тишниу, оптимальный температурный режим и другие необходимые комфортные условия для отдыха и лечения. Весь этот комплекс полезностей делает лес наиболее привлекательной частью природного ландшафта. По исследованиям социологов, более 60% населения предпочитает отдых в лесу.

В нащей стране создаются оптимальные условия для активного отдыха трудящихся на лоне природы. Специально для целей отдыха выделено более 1 млн. га курортных лесов, более 15 млн. га зеленых зон вокруг почти 5 тыс. городов и крупных населенных пунктов.

Более 70% туристских маршрутов пролегает в живописных лесных массивах, где выделяются специальные рекреационные леса с особым режимом ведения хозяйства в них.

На примере Карпат рассмотрим характер использования территории в рекреационных целях. Эта территория лесистостью более 60% широко известна своими рекреационными ресурсами: живописные лесные горные и долинные ландшафты, памятники народного зодчества и национальной культуры, всемирно известные минеральные источники. В Карпатах 206 объектов подлежит охране, из них более 100 — ценнейшие памятники природы. Природно-климатические условия позволяют отдыхать и лечиться на протяжении всего года. Комплексное использование природных ресурсов широко привлекает туристов, экскурсантов, отдыхающих, спортсменов. По территории горных лесных Карпат проходит 59 туристских маршрутов с плановой пропускной способностью более 100 тыс. человек. Общее же количество туристов, экскурсантов, отдыхающих и лечащихся в течение года достигает 2 млн. человек. Только туристические базы Закарпатья за летний период принимают более 800 тыс. человек.

В соответствии с задачами, поставленными XXV съездом КПСС по дальнейшему развитию, расширению и благоустройству санаторно-курортных зон и туризма, в Карпатах в X пятилетке размер капиталовложений на эти цели увеличивается в 3,5 раза по сравнению с IX пятилеткой. Проектируется государственный природный парк на площади 430 тыс. га, одна из главных задач которого — создание условий для широкого доступа туристов и отдыхающих. Это мероприятие подчеркивает заботу государства о наилучших условиях для отдыха трудящихся и сохранении природной среды.

Очевидно, что массовое посещение лесов отдыхающими, туристами, экскурсантами сопряжено с сокращением других видов пользования лесом и неизбежными в этом случае потерями. По имеющимся данным, массовое посещение лесов сопровождается

потерей прямого лесного дохода в размере 13% возможного. Неорганизованный туризм приносит еще более ощутимый ущерб.

Возникает вопрос: как сочетать интересы дальнейшего развития туризма с задачами охраны природы и повышения продуктивности наших лесов? Альтернативы в охране лесов при их рекреационном использовании быть не может. Охранять лес нужно не от туристов, а для туризма, не от посетителей, а для отдыха и лечения.

Использование лесных участков для рекреационных целей требует изменить режим ведения хозяйства в лесах. К этим мероприятиям относятся ландшафтные рубки, специальные лесные культуры, уборка территории, создание лесных биогрупп и т. д. Затраты лесного хозяйства на поддержание соответствующей обстановки в местах, наиболее посещаемых населением, возрастают против обычных в 5—6 раз. И чем больше будут осваиваться лесные угодья для отдыха, туризма и лечения трудящихся, тем большие затраты будут необходимы для создания комфортных условий. Поэтому в каждом конкретном случае необходим дифференцированный подход к определению величины и направления затрат.

Забвение этих очевидных положений приводит к значительным и безвозвратным потерям.

На берегах Клязьминского водохранилища подсчитано 12 тыс. следов костров. А за сутки группа из 4 человек расходует 0,2—0,25 м³ древесины. Если в этом случае не организовать специальную заготовку дров, то стихийная заготовка может привести к значительному ущербу для леса.

На берегах известного оз. Селигер в течение года на лесных полянах бывает 30 тыс. групп туристов, которые на кострах сжигают 200 тыс. м³ древесины. Тысячи деревьев срублены и изуродованы для устройства палаток, скамеек и т. п. В Молдавии подсчитано, что неорганизованные туристы приносят ущерб народному хозяйству республики в размере 1,5 млн. р.

Есть и иные примеры. Опыт эстонских лесоводов показывает, что в палаточном лагере, разбитом на площади 1 га, можно в течение трех месяцев, без нарушения лесной обстановки, предоставить ночлег примерно 10 тыс. туристов и обеспечить стоянку для 2,5 тыс. автомобилей. Определенных успехов в создании специальных рекреационных зон добились волынские лесоводы.

В больших масштабах используются леса в рекреационных целях за рубежом. Интересен в этом отношении опыт США. В государственных лесах страны, занимающих площадь 180 млн. га, население проводит около 200 млн. чел.-дн. Число отдыхающих в лесах США возрастает ежегодно.

В ФРГ и Англии, при наблюдающемся падении рентабельности лесозаготовок, основной ценностью лесов считают их санитарно-гигиеническую и эстетическую роль. В Чехословакии в районе Великих Татр функционирует Народный парк площадью 50 тыс. га. В Польских Карпатах с 1954 г. организован Народный парк на площади 21 тыс. га. В этих парках ежегодно отдыхают более 2 млн. туристов и экскурсантов, при этом лесная обстановка и экологическое равновесие полностью сохраняются.

В организации рекреационного использования лесов следует придерживаться определенных нормативов. Специальными исследованиями установлено, например, что при плотности посещения до 10 чел. на 1 га лесная среда не нарушается, и в этом случае можно допускать свободный режим пользования насаждениями без ущерба для их состояния. Предельное количество посетителей, при котором возможен свободный режим пользования лесом, не должно превышать 50—70 человек на 1 га. После 3—4-летнего использования полян, как показывает опыт, для восстановления травяного покрова требуется 5—6 лет. При количестве посетителей свыше 100 человек на 1 га лесная обстановка полностью нарушается и не восстанавливается.

Рекреационное использование лесов обеспечивает выполнение важной общественной функции: восстановление сил, развитие личности. Внимательное и бережное отношение к рекреационным лесам поможет им и в настоящее время, и в перспективе успешно выполнять эту важную функцию.

№ 1

УДК 634.0.864.9

ГИДРОЛИЗНЫЙ ЛИГНИН КАК КОАГУЛЯНТ

С. Б. ПАЛЬМОВА, Е .Д. ГЕЛЬФАНД

Архангельский лесотехнический институт

Показано, что при осветлении подкисленных сточных вод сульфатно-целлюлозного производства гидролизный лигнин проявляет свойства коагулянта, а также устраняет мутность и опалесценцию, снижает окраску и содержание растворенной органики.

В процессе исследований по химической очистке сточных вод, в частности так называемого «черного стока» Соломбальского ЦБК, замечено, что при подкислении его серной кислотой происходит массовая коагуляция основной части загрязнений, и химическое потребление кислорода (XIIK) сточной воды снижается на 80%, однако образующиеся взвеси очень трудно отделяются обычными приемами.

В целях эффективного отделения образующихся взвесей опробовали гидролизный лигнин (ГЛ) Архангельского гидролизного завода, расположенного рядом с Соломбальским ЦБК.

ломоальским цык. В первой серии исследований изучили, как влияет дозировка лигнина на величину объема осадка в сточной воде. Для этого в шесть из семи одинаковых цилиндров емкостью 250 мл, заполненных сточной водой *, подкисленной серной кислотой до рН 3,5, ввели различные дозы сухого ГЛ. После двухчасовой выдержки замерили объем осадка в каждом цилиндре. Повторность опытов двукратная. Результаты представлены в табл. 1, из которой видно, что дозировка ГЛ около 1 г/л может быть принята за оптимальную.

Таблица 1

Дозировка	Объем осадка				
гидролизного лигница, г/л	МЛ	% к контролю			
0 (контроль)	60	100			
0.4	40	67			
0,64	30	50			
0,84	24	40			
1,07	25	42			
1,70	33	55			
2,25	40	67			

Следует отметить, что во всех цилиидрах, за исключением контрольного, осветлечный слой жидкости был совершенно прозрачным, а осадки были значительно плотнее и имели четкую границу.

Анализ влияния добавки ГЛ на показатель ХПК обработанной воды показал, что в контрольном цилиндре ХПК 2820 мг/л, а в цилиндре с дозой ГЛ 1 г/л-1760 мг/л.

Сспоставление коагулирующего действия ГЛ с действием глинозема при дозах 1 г/л показало, что ГЛ значительно эффективнее: объем осадка в опытах с ГЛ на 25% меньше, чем с глиноземом.

Во второй серии опытов исследовали динамику осаждения взвесей, образующихся при подкислении сточной воды, без ГЛ и с добавлением ГЛ в количестве 1,4 г/л. Как видно из данных, приведенных на рис. 1, влияние ГЛ особенно сильно проявляется в первые 30 мин.

В третьей серии изучили влияние добавок ГЛ на фильтруемость подкисленной сточной воды. Было замечено, что не все пробы подкисленной сточной воды фильтруются одинаково: одни, хотя и с небольшой скоростью, но поддаются фильтрова-

^{*} Показатели сточной воды: биохимическое потребление кислорода (БП K_5) 2—2,5 г/л; ХПK 9—11 г/л, рH = 7,2 \div 9,0.

^{11 «}Леской журнал» № 1

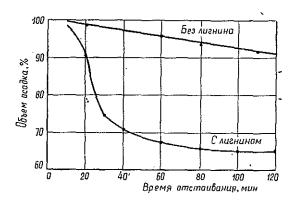


Рис. 1.

нию, другие совершенно не фильтруются: полотняный фильтр быстро забивается мазеобразной массой и процесс прекращается. Поэтому провели опыты с первыми и вто-

рыми образцами сточной воды.

Пробу сточной воды при рН 3,5 в количестве 100 мл фильтровали через двойной полотияный фильтр на воронке Бюхнера под вакуумом. Повторность опытов пяти-кратная. Время фильтрации 76 с (± 1 с). Затем в эту же пробу сточной воды вводили 0,1 г сухого ГЛ, перемешивали 3 мин и фильтровали в идентичных условиях (также в пяти повторностях). Время фильтрации 54 с (± 2 с), т. е. уменьшилось в 1,4 раза. Фильтраты воды без ГЛ мутные, с опалесценцией, а фильтраты воды с ГЛ совершенно прозрачны, без опалесценции.

В опытах с нефильтрующейся подкисленной водой последняя имела следующую характеристику: окисляемость по Кубелю 711 мг O_2/π , ХПК 2030 мг O_2/π . При ее фильтровании в указанных условиях фильтр сразу же забивался маслоподобным осадком. После того, как в 100 мл воды вводили 0.2 г ГЛ при 3-минутном перемешивании, она фильтровалась очень легко, даже без вакуума. Характеристика фильтрата (по результатам 5 параллельных определений): окисляемость по Кубелю 596 мг O_2/π , ХПК

1550 мг О2/л.

В заключение провели пробные опыты с использованием сульфатного лигнина (СЛ) и полуцеллюлозы (ПЦ) взамен ГЛ. Результаты опытов с ПЦ отрицательны, СЛ проявлял свойства коагулянта в меньшей степени, чем ГЛ, давая побочный, нежелательный эффект: усиливалась окраска сточной воды и увеличивалось ХПК.

Таким образом, гидролизный лигнин как коагулянт высокоэффективен при очи-

стке подкисленных сточных вод ЦБК.

УДК 668.474

СУШКА СУЛЬФАТНОГО ЛИГНИНА В ВИХРЕВЫХ СУШИЛЬНЫХ КАМЕРАХ

П. П. ТИРАНОВ, Л. М. КОЧЕТОВ, Б. С. САЖИН

Архангельский лесотехнический институт, НИИХИММАШ

Результаты исследований показали, что вихревые сущилки могут быть применены для сушки сульфатного лигнина до влажности менее 2%. Лигнин, высушенный в вихревой сущилке, получается в виде мелкодисперсного порошка с размером частиц 50—160 мкм, что способствует сокращению затрат на последующее виброизмельчение продукта.

На основании предварительного изучения по литературным источникам характеристик различных типов сушилок и анализа их работы было сделано предположение о целесообразности использования для глубокой сушки сульфатного лигнина вихревых сушилок, разработанных НИИХИММАШем [3]. По экономичности работы и глубине сушки они превосходят пневмотрубы с прямым и спиральным движением газо-

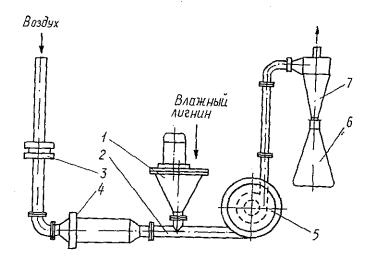


Рис. 1. Схема экспериментальной установки.

I — питатель; 2 — трубопровод; 3 — нормальное сопло; 4 — электро-калорифер; 5 — вихревая камера; 6—сборник сухого лигиниа; 7—циклон.

взвеси. Вихревые сушилки могут быть использованы для сушки слипающихся и комкующихся материалов, поскольку влажный материал поступает в слой подсушенного материала, находящегося в камере, и интенсивно перемешивается с ним; это предотвращает слипание частиц и налипание их на стенки аппарата.

На экспериментальной установке НИИХИММАШа были проведены опыты по сушке сульфатного лигнина в вихревой сушильной камере диаметром 240 мм

(BC-240).

Влажный лигнин с помощью шнекового питателя 1 (рис. 1) непрерывно подается в трубопровод 2, где подхватывается потоком воздуха, нагретого в электрокалориферах 4, и тангенциально вводится в вихревую камеру 5. Там происходит сепарация твердых частиц лигнина, образующих в периферийной зоне вращающеся кольцо. По мере накопления и высушивания лигнина скорость вращения кольца снижается, что приводит к уменьшению центробежной силы, действующей на частицы. Когда величина центробежной силы становится соизмеримой с силами, действующими на частицы в противоположном направлении и обусловленными непрерывным поступлением влажных частиц, начинается унос лигнина из камеры. С этого момента количества лигнина, поступлющего в аппарат и уносимого из него, равны.

Высушенный лигнин из вихревой камеры 5 увлекается потоком горячего воздуха в циклон 7, где лигнин отделяется и затем поступает в сборник сухого продукта 6,

а отработанный воздух выбрасывается в атмосферу.

Для проведения экспериментов использовали промышленный порошкообразный сульфатный лигнин с различной начальной влажностью от 5,8 до 53,8% (табл. 1). Расход горячего воздуха и его температуру подбирали с таким расчетом, чтобы тем-

Таблица 1

Номер	Произво- дитель- ность	Расход воздуха,	Темпе; возду	ратура ха, °С		ть лигни- %	Темпера- тура
опыта	сушилки, кг/ч	м ³ /ч	начальная	конечная	начальная	конечная	лигинна, °С
1 2 3 4 5 6	15,3 12,8 11,0 5,0 4,0 4,6	50 50 42 42—43 60 42	100 121 139 145 142 144	61 73 79 68 71 64	5,8 6,8 6,8 35,3 34,4 53,8	1,6 1,2 0,5 1,8 1,6 2,3	52 61 63 46 49 50
Сополимер МСН	16,0	100	140	90	8,0	0,5	

пература высушенного лигнина не превышала 65°С. В процессе сушки сульфатного лигнина в вихревой сушилке его температура поднималась до 49—63°С, при этом расход горячего воздуха составлял 42—60 м³/ч, температура воздуха была на входе в сушилку 100—145°С, а на выходе из нее 61—79°С. Производительность вихревой сушилки по исходному продукту колебалась в пределах от 4,0 до 15,3 кг/ч. Анализ результатов опытов показал, что в вихревой сушилке при сушке сульфатного лигнина с начальной влажностью до 35% можно получить продукт с конечтой.

Анализ результатов опытов показал, что в вихревой сущилке при сушке сульфатного лигнина с начальной влажностью до 35% можно получить продукт с конечной влажностью менее 2%. Такой лигнин по глубине сушки удовлетворяет требованиям ВТУ-68 на сульфатный лигнин [1], используемый в производстве пластмасс и шинной промышленности. Продукт, получаемый при сушке сульфатного лигнина с

более высокой начальной влажностью, не отвечает этим требованиям.

В процессе промышленного производства сульфатного лигнина стадии сушки предшествует стадия его фильтрования и промывки, после чего он получается в виде текучей пасты влажностью 65—70% [2]. Поэтому в промышленных условиях для достижения и интенсификации процесса глубокой сушки сульфатного лигнина в вихревой сушкик необходимо проводить предварительное высушивание текучеобразной пасты до сыпучего порошкообразного продукта. Обычно сушку термочувствительных пастообразных продуктов, к которым относится и паста сульфатного лигнина, проводят в распылительных сушилках. Опыт эксплуатации распылительной сушилки в лигнином цехе Соломбальского ЦБК показал, что данные сушилки могут быть эффективно использованы для сушки лигнина до влажности 10—20%.

Таблица 2

Номер опыта Исходный 2			Oc	таток л	arma,	%, на си	тах №		-
гомер опыта	063	04	C315	02	016	01	0063	005	на дне
Исходный 2 4 5 6	5 0 0 0	3 1 1 2	4 1 1 1	16 1 1 0	1 4 1 2 4	31 49 29 59 52	28 37 53 30 41	5 14 4 0	12 2 0 2 0

Исследование гранулометрического состава исходного и высушенного сульфатного лигнина показало (табл. 2), что в вихревой сушилке одновременно с высушиванием происходит диспергирование лигнина. В сульфатном лигнине, высушенном в вихревой сушилке, содержание фракции с частицами размером менее 160 мкм, которая по дисперсности отвечает требованиям ВТУ-68, колеблется в пределах от 93 до 96%, в то время как в исходном лигнине содержание ее составляет 71%.

Процесс сушки сульфатного лигнина на лабораторной вихревой сушилке по основным параметрам подобен процессу сушки сополимера стирола МСН (табл. 1). Для сушки его НИИХИММАШем разработана и внедрена установка с вихревой сушилкой ВС-800, производительность которой по исходному продукту 500 кг/ч, а по испаряемой влаге — около 50 кг/ч. Ориентировочная производительность ее при глубокой сушке сульфатного лигнина, предварительно высушенного в распылительной сушилке до влажности 10—20%, составит 220—550 кг/ч в расчете на абс. сухой чигнин. Результаты проведенных исследований позволяют сделать вывод, что в промыш-

Результаты проведенных исследований позволяют сделать вывод, что в промышленных условиях вихревые сущилки могут быть использованы в сочетании с распылительными сушилками для высушивания сульфатного лигнина до влажности менее 2%. Лигнин, высушенный в вихревой сушилке, получается в виде мелкодисперсного порошка с частицами размером в среднем 50—160 мкм, что способствует сокращению затрат на последующее виброизмельчение продукта.

ЛИТЕРАТУРА

[1]. Богомолов Б. Д., Тиранов П. П., Соколов О. М., Крайнов И. П., Личутин А. Ф. — Труды АЛТИ, вып. ХХХІІ, 1972, с. 3—9. [2]. Богомолов Б. Д., Тиранов П. П., Соколов О. М., Крайнов И. П., Личутин А. Ф. — «Бумажная промышленность», 1975, № 5, с. 14—15. [3]. Кочетов Л. М., Сажин Б. С., Карлик Е. А. — «Химическое и нефтяное машиностроение», 1969, № 2, с. 10—11; 1969, № 9, с. 10—11.

№ 1

ЛЕСНОЙ ЖУРНАЛ

1977

научные конференции и совещания

УДК 632.9

ХИМИЧЕСКИЕ И БИОЛОГИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ ЛЕСА

Использованию химических и бнологических средств в борьбе с вредителями леса было посвящено состоявшееся в ноябре 1976 г. в Подмосковье всесоюзное научно-техническое совещание. В его работе приняли участие представители всех союзных республик, специалисты и научные работники лесного, сельского и рыбного хозяйства, химической и бактериальной промышленности, здравоохранения, гражданской авнации, Академий Наук СССР и союзных республик, различных НИИ и вузов. Заслушано и обсуждено около 50 докладов и сообщений.

Открывая совещание, зам. председателя Гослесхоза СССР К. Ф. Кулаков отметил большую заботу партии и правительства о благополучии лесов и показал возможности союза химии и биологии в оказании помощи лесам. По Н. Н. Храмцову (Гослесхоз СССР), химический метод в борьбе с вредителями и болезиями все еще остается одним из основных, и дальнейшая задача должна заключаться в отыскании и применении быстро распадающихся пестицидов, безопасных для людей, полезной фауны и окружающей среды. Ф. С. Кутеев и Г. И. Андреева (ВНИИЛМ), занимающиеся заменой стойких хлорорганических соединений (ДДТ, ГХЦГ и др.), рекомендуют большой перечень наиболее приемлемых средне- и малотоксичных фосфорорганических соединений: бензофосфат (фозалон), метатнон, фталофос, хлорофос и др. Они же ведут работы по сочетанию химического метода с биологическими и лесохозяйственными приемами. Н. Н. Мельников (ВНИИХСЗР) посвятил свой доклад влиянию пестицидов на окружающую среду, призывая лесоводов проявлять большую осторожность при использовании пестицидов. О вспышках массового размножения сибирского шелкопряда и перспективах химической борьбы с ним сделал доклад Ю. П. Кондаков (ИЛиД СО АН СССР). В. А. Закордонец (ВНИИГИНТОКС) считает, что должно возрасти внимание к охране природы со стороны санитарно-эпидемиологических учреждений, водорыбнадзора, общества охраны природы и других ведомств. Критерии и подходы различных ведомств в инспекторских функциях пока разные, что усложняет организацию защиты леса. Настало время разработать междуведомственные критерии применения пестицидов к условиям лесного хозяйства. С докладами о химических мерах борьбы выступили: В. И. Дашевский; В. Т. Валента с вредителями леса авторами (ЛатНИИЛХ и НИИ МЗ ЛитССР), Г. И. Юрченко с соавторами (Даль-НИИЛХ), Г. В. Стадинцкий (ЛенНИИЛХ), Г. А. Таланов и (ВНИИВС), Н. Г. Ким (СреднеазНИИЛХ) и др. Заслушан ряд докладов о сочетании химических и биологических средств: М. Р. Спектора (МЛХ УкрССР), С. А. Мирзояна с соавторами (АрмИЗР) и др. В докладах перечислены лучшие и худшие пестициды, ингредиенты, растворители, нормы, дозировки, время, виды вредителей, против которых применялись препараты, эффективность, влияние на полезную фауну и др. Большинство докладчиков высказались за ультрамалообъемную обработку, и не сплошную, а выборочную. По мнению А. М. Бортника (ЛенНИИЛХ), один из наиболее действенных путей уменьшения нежелательных последствий от применения химических средств в лесу заключается в локализации мероприятий, основанной на базе лифференцированных технологических решений. Разработанная в ЛенНИИЛХе стациальная теория динамики популяций позволяет перейти вплотную к изысканию новых схем отработки леса, в частности мозаичных, полосных, блокирующих и др. Применение химического агрегата АЛХ позволит в большинстве случаев отказаться от авиации. Н. П. Павлинов (МЛХ РСФСР) обратил внимание на отсутствие в лесном хозяйстве аппаратуры серийного производства, плохое снабжение пестицидами. А. Д. Маслов (ВНИИЛМ), на основе исследований чувашских и марийских авторов, в боръбе с майским хрущом и подкорным клопом рекомендует применять давно оправдавшие себя меры — густые (15—18 тыс. на 1 га) культуры, а при реконструкции погибающих культур — комплексные мероприятия, включающие использование пестицидов. М. В. Прибылова (СКЛОС) и И. Ф. Барышников (Таджикистан) поделились вполне удовлетворительными результатами опыта борьбы с вредителями орехоплодных культур посредством обработки их рогором и бензофосфатом.

Положительно было встречено выступление А. Т. Крушева (БелНИИЛХ) о комилексных мероприятиях по борьбе с вредителями, включающих надзор за ними, прогноз размножения, профилактику и истребительные мероприятия. А. И. Воронцов (МЛТИ), используя мировой опыт, говорил о перспективах использования энтомофагов: «Существующие способы использования энтомофагов в ближайшее время в лесном хозяйстве не могут найти широкого применения. Исключение составляют муравы рода формика». А. Б. Гукасян (СО АН СССР) сообщил о результатах многолетних работ по использованию бактериального препарата — инсектина. Для условий Сибири им с сотрудниками разработаны стратегия и тактика борьбы, сроки применения расхода и пр. и дано экономическое нормы обоснование метода. Об использовании микробнологических препаратов в защитном лесоразведении говорил В. Ю. Щебланов (ВНИАЛМИ). Л. Н. Щербакова (ЛТА) сообщила об испытаниях ею инсектина, энтобактерина, битоксибациллина и экзотоксина против жуков майского хруща в ЧАССР. Заслушано сообщение Е. В. Орловской (ВНИИбакпрепарат) о применении вирусного препарата вприн-энш против непарного шелкопряда, Г. В. Ларионова с соавторами (СО АН СССР) н С. Ю. Михкельсона об использовании вируса ядерного полиэдроза в борьбе с рыжим сосновым пилильщиком. По П. П. Дмитриеву (Оренбургская ЛСЗР), вирин-энш, испытанный им против непарного шелкопряда, показал разноречивые результаты: эффективность составляла от 40 до 64%. П. А. Положенцев (ВЛТИ) сделал обзорный доклад об использовании беспозвоночных: протозоев, нематод, клещей, пауков, многоножек и привел иллюстрации подавления ими вредных лесных насекомых; сообщил о методах размножения протозоев и нематод, хранения, диссеминации в природе, испытанных в опытах у нас и за рубежом. В. Д. Бедиый (ВНИИБСЗР), И. В. Тропин (ВНИИЛМ), Г. Э. Озолс и М. Я. Бичевские доложили об испытаниях и применении аттрактантов для привлечения самцов непарного шелкопряда и короедов в целях их уничтожения.

О борьбе с грибиыми заболеваниями сделали доклады С. Ф. Негруцкий (Донецкий Государственный университет), Р. А. Крангауз (ВНИИЛМ), Н. М. Ведерников (Тат-ЛОС), Т. Д. Гаршина (СочНИЛОС), Н. И. Федоров с соавторами (БелТИ), С. В. Шевченко (ЛЛТИ), Ю. В. Виткунас (ЛатНИИЛХ), А. П. Василяускас (ЛитНИИЛХ), Г. А. Таланов (ВНИИВС). П. А. Трибун (УкрНИИЛХ) говорил о мероприятиях по защите дубрав Украинских Карпат. В принятой резолюции отмечается, что лаборатории НИИ не располагают современным оборудованием и инсектариумами для разработки биологических мер борьбы; ощущается недостаток в высококвалифицированных специалистах и др. К совещанию ВНИИЛМ издал сборник тезисов, включающий многие полезные сообщения, не заслушанные на совещании.

П. А. Положенцев.

Воронежский лесотехнический институт.

Nº 1

О ПОВЫШЕНИИ ЭФФЕКТИВНОСТИ РАБОТЫ И КАЧЕСТВА ПРОДУКЦИИ ПОДСОЧНОГО И ОСМОЛОЗАГОТОВИТЕЛЬНОГО ПРОИЗВОДСТВА

21—23 февраля 1977 г. в г. Кирове состоялась научно-техническая конференция «О работе и задачах КирНИИЛПа в свете решений XXV съезда КПСС», организованная Кировским областным правлением НТО лесной промышленности и лесного хозяйства, объединения Кировлеспром и научно-исследовательским и проектным институтом КирНИИЛП.

В работе конференции принимали участие сотрудники КирНИИЛПа, представители общественных организаций г. Кирова, технического управления Минлеспрома СССР, всесоюзного объединения Союзхимлес, производственного объединения Лесохимпродукция Министерства бумажной промышленности СССР, научные сотрудники центрального научно-исследовательского и проектного института лесохимической промышленности — ЦНИЛХИ, инженерно-технические работники и передовые рабочие ведущих профессий объединений Кировлеспром, Арххимлес, Вологдахимлес, Горькхимлес, Белоярского инструментального завода, преподаватели и научные сотрудники высших учебных заведений — Ленинградской лесотехнической академии, Львовского и Уральского лесотехнических институтов.

На конференции были заслушаны доклады о развитии лесной и деревообрабатывающей промышленности в СССР, перспективах развития лесозаготовительной промышленности Кировской области в десятой пятилетке, об итогах выполнения производственного плана лесохимической отраслыю за 1976 г. и задачах научных учреждений по повышению эффективности производства и качества продукции в текущей пятилетке, об основных направлениях исследований по технологии подсочки сосны и заготовке осмольного сырья, изучению возможности использования лесосырьевых ресурсов в потребительской базе Усть-Илимского промышленного комплекса и зоне строительства БАМ на территории Иркутской области.

Много внимания было уделено на конференции экономической оценке работы предприятий по заготовке лесохимического сырья и направлениям экономических исследований. В связи с истощением сырьевых баз канифольпо-экстракционных заводов большой интерес вызвали доклады о прижизненной стимуляции смолообразования и просмоления древесным в сосновых насаждениях, лесохимическое и лесоводственное обоснование этих сложных биохимических процессов. Рассматривались вопросы по дальнейшему совершенствованию заготовки осмола и добычи живицы: сквозной весовой учет осмола, пути снижения трудоемкости на осмолозаготовках, возможность механизированной заготовки каррового осмола на лесоперерабатывающих комбинатах. Отмечалось, что уровень механизации труда на осмолозаготовках все еще остается низким. На основных работах он составляет 27%, а по всему комплексу осмолозаготовительных работ — 21%. Совсем не механизирована наиболее трудоемкая операция осмолозаготовительного производства — разделка и очистка осмола, удельный вес которой составляет 39% при взрывной и 51% при механизированной корчевке пней.

По подсочке леса были заслушаны доклады о бносинтезе живицы и возможных путях его интенсификации, снижении трудоемкости подготовительных работ на сборе живицы, повышении качества сосновой живицы, совершенствовании вздымочных инструментов, рациональной технологии подсочки для Восточной Сибири с увеличением сроков применения серной кислоты до 7—10 лет, о влиянии современной подсочки, когда свыше 80% живицы добывается с химическим воздействием, на санитарное состояние насаждений и окружающую среду, о применении минеральных удобрений (мо-

чевина, двойной суперфосфат), которые при промышленных испытаниях обеспечивают повышение выхода живицы до 30%.

После обсуждения докладов и сообщений и творческих дискуссий по широкому кругу проблем подсочного и осмолозаготовительного производства было рекомендовано в десятом пятилетии сосредоточить усилия институтов на разработке и внедрении средств механизации и автоматизации трудоемких процессов, более активных стимуляторов, новых типов инструментов и оборудования, новой технологии подсочки с резким сокращением обходов вздымщиков без снижения выхода живицы.

В осмолозаготовительном производстве расширить выпуск и применение серийных корчевальных и транспортных машин, мотобуров, клиньевых корчевателей, внедрять опыт передовых предприятий по организации работ на осмолозаготовках укрупненными комплексными бригадами, заведшить начатые научно-исследовательские работы по прижизненному просмолению прикорневой части сосновых деревьев, разработать правила использования искусственно просмоленной древесины в качестве сырья в канифольно-экстракционном производстве.

Для участников конференции был организован показ новых научно-технических кинофильмов по лесной промышленности и производственная экскурсия для ознакомления с конструкцией и работой гидрофицированной раскряжевочной установки ГРУ-1 и для ознакомления с поточной линией по переработке коры на топливные брикеты.

Ф. А. Медников.

Ленинградская лесотехническая академия

1977

КРИТИКА И БИБЛИОГРАФИЯ

УДК 634.0.652

Nº 1

ОПЫТ ЭКОНОМИЧЕСКОЙ ОЦЕНКИ ЛЕСОВ В ЛИТОВСКОЙ ССР

Задача повышения продуктивности лесов, поставленная XXV съездом КПСС перед лесоводами нашей страны, требует учета всей многообразной комплексной про-

дукции леса как в натуральных, так и в стоимостных показателях.

На протяжении многих лет ведутся методические разработки по экономической оценке лесов. Известны работы И. В. Воронина, Ф. Т. Костюковича, Е. Я. Судачкова, И. В. Туркевича, В. Л. Джиковича и др. Должное внимание данной проблеме уделяют экономисты Литовской ССР, практическим подтверждением чего являются исследования ученых ЛитСХА, Института экономики АН ЛитССР, ЛитНИИЛХа, организация конференции по экономической оценке лесов в 1975 г. в Каунасе.

низация конференции по экономической оценке лесов в 1975 г. в Каунасе, Ответ на ряд актуальных вопросов мы находим в работе О. Н. Анцукевича «Опыт экономической оценки лесов в Литовской ССР» (изд. ЦБНТИ лесхоз, 1976,

вып. 15).

На конкретных примерах автор показал необходимость и зозможность использования данных экономической оценки лесов при анализе состояния лесного фонда, определении оптимальных возрастов рубки, экономической оценке результатов лесовыращивания, установлении экономически оптимального состава пород и продукции, разрешении вопросов ценообразования, трансформации земель и т. д.

Ценность этой работы состоит в том, что автор не только предложил методику экономической оценки лесов, но и опробовал ее на примере лесного хозяйства всей республики. Оценка включает годичный прирост древесины, продукты побочного

пользования лесом и его средозащитные, рекреационные функции.

В первом разделе работы «Экономическая оценка леса в качестве основных фондов» автор относит леса в возрасте смыкания крон к основным фондам группы «Лес». Прирост древесины с момента смыкания крон и до момента рубки он рассматривает как результат действия основных фондов группы «Лес» и включает их амор-

тизацию в себестоимость прироста древесины.

При оценке лесов автор исходит из теории трудовой стоимости К. Маркса. В качестве критерия экономической оценки лесов он принимает общественно необходимые затраты на его воспроизводство. Причем автор считает, что цена прироста должна быть построена на основе общественно необходимых затрат труда на относительно худших землях, что дает возможность определять дифференциальную ренту по плодородию.

В работе приведены данные об общей стоимости насаждений различных пород в возрасте смыкания крон, а также об общей стоимости годичного прироста и за-

паса древеснны в лесах Литовской ССР.

Цены на продукты побочного пользования, по мнению автора, должны складываться из отчислений на лес, возмещения ущерба, причиняемого лесовыращиванию в процессе заготовки, заграт на заготовку и первичную транспортировку и прибыли заготовительных предприятий. Ввиду отсутствия таких цен авгор пользуется заготовительными ценами и приводит данные о потенциальных ресурсах побочного пользования по типам леса.

Переходя к экономической оценке защитных и рекреационных функций леса, автор считает, что наиболее правильна оценка по затратам на их хоэжиственное использование. Однако при отсутствии для этого исходных данных автор рекомендует систему коэффициентов: 0,2 — водоохранные функции; 0,1 — климаторегулирующие; 0,2 — противоэрозионные; 0,1 — гигиенические; 0,2—0,4 — рекреационно-оздоровительные (в долях общей стоимости лесных продуктов на единице площади).

Таким образом, предлагаемая О. Н. Анцукевичем методика экономической оценки лесов и практическое ее использование представляют несомненный интерес.

Однако отдельные методические положения вызывают замечания. Трудно согласиться с тем, что «экономическая оценка лесов практически сводится к оценке двух объектов: леса, выступающего в качестве основных фондов, и годичного прироста древеснны, а экономическая оценка других видов продуктивности леса необходима при решении вопросов прикладного характера». На наш взгляд, под экономической оценкой лесов необходимо понимать денежную оценку всего и проднохозяйственного эффекта, который приносит лес в процессе комплексного использования, т. е. древес-

ных запасов, недревесных продуктов леса, а также защитных и рекреационных функций леса, как это предусмотрено коллективной методикой 1975 г., соавтором которой является О. Н. Анцукевич*.

Неправомерно относить лесонасаждения только к основным или только к оборотным фондам. Еще К. Маркс писал: «... То, что называется здесь запасом — определенное количество леса на корню... находится в процессе производства в условном смысле (одновременно в качестве средств труда и материала)... **. Другими словами, леса участвуют в процессе лесохозяйственного производства на каждом этапе выращивания одновременно и как основные, и как оборотные фонды. Если относить леса к основным фондам, как считает автор, возникает вопрос — какой смысл заложен в понятие «амортизационные отчисления на леса»? В зем выражается степень износа основных фондов по группе «Лес»?

На наш взгляд, выручку от реализации продуктов промежуточного пользования (рубки ухода, санитарные) надо относить на уменьшение затрат при определении

себестоимости годичного прироста.

В целом же, с учетом сделанных замечаний, методика экономической оценки лесов, предложенная О Н. Анцукевичем, заслуживает внимания и может быть использована при решении разнообразных задач в области планирования лесохозяйственного производства.

И. В. Воронин, Л. И. Косова, Л. И. Панищева. Воронежский лесотехнический институт

УДК 634.0.6 +634.0.18

КНИГА ОБ ЭКОНОМИЧЕСКИХ ПРОБЛЕМАХ КОМПЛЕКСНОГО ИСПОЛЬЗОВАНИЯ И ОХРАНЫ ЛЕСНЫХ РЕСУРСОВ

(вопросы теории) *

Нет надобности подчеркивать важность затронутой в книге проблемы, ее значение понято уже во всем мире. В то же время автор впервые в нашей стране так целостно и под таким углом зрения исследует экономический аспект рационального

использования и охраны возобновляемых ресурсов биосферы. В предисловии к монографии, написанном Л. И. Ильевым и А. П. Петровым, отмечено, что предлагаемая читателю книга— серьезный научный труд, содержащий вместе с тем и дискуссионные положения. Монография значительно развивает зарождающееся научное направление, которое можно сформулировать как «Экономи-

Отдельные положения книги могут быть использованы в учебном процессе, так как уже назрела необходимость включения в учебные программы экономических дисциплин высших учебных заведений раздела «Эколого-экономическая оценка использования и охраны природных (в том числе лесных) ресурсов». В связи с этим было бы целесообразно включить в подобный курс такие положения рецензируемой книги, как взаимосвязь проблем охраны и рационального использования природных ресурсов, охрана природы как производственная категория, тенденция возрастания родно-охранных затрат в общественном производстве и т. п.

Книга Ю. Ю. Тупыци с большим успехом может быть использована в качестве учебного пособия для студентов экономических и лесохозяйственных факультетов вузов и, несомненно, привлечет внимание большого круга специалистов.

Н. И. Кожухов.

Московский лесотехнический институт

Методика экономической оценки лесных земель. Каунас, изд. ЛитСХА, 1975. ** Маркс К., Энгельс Ф. Собр. coч., т. 24, с. 354.

^{*} Тупыця Ю. Ю. Экономические проблемы комплексного использования и охраны лесных ресурсов. «Высшая школа», изд-во Львовского государственного университета, 1976.

1977

ЮБИЛЕИ

ЮБИЛЕЙ ВЛАДИСЛАВА ВАСИЛЬЕВИЧА ФЕФИЛОВА

20 февраля 1977 г. исполнилось 70 лет со дня рождения и 50 лет производственной, научной, педагогической и общественной деятельности доктора технических наук, профессора, заведующего кафедрой химической технологии древесины Московского лесотехнического института Владислава Васильевича Фефилова.

- В. В. Фефилов родился в семье крестьянина. Свою трудовую деятельность начал в 1926 г. После окончания высшего учебного заведения с 1933 г. работает в области лесохимии.
- В. В. Фефилов непосредственно и активно участвовал в становлении и развитии отечественной лесохимической промышленности, работал на лесохимических заводах: Ривицком, Ашинском, Ижевском, Сявском; в течение 19 лет работал в Центральном научно-исследовательском лесохимическом институте, вначале младшим научным сотрудником, затем старшим научным сотрудником, начальником лаборатории, заместителем директора по научной работе и директором этого института.
- С 1959 г. Владислав Васильевич на педагогической работе в Московском лесотехническом институте, где по его инициативе и при непосредственном участии организована кафедра химической технологии древесины, которую он возглавляет в настоящее время.

Основные научные труды В. В. Фефилова посвящены вопросам химпи древесниы, химпической технологии древесниы. Его докторская диссертация — «Термическая переработка измельченной древесны» — рассматривает в теоретическом и прикладном аспекте проблему переработки малоценной, неиспользуемой древесным и древесных отходов на ценные лесохимические продукты. В В. Фефилову принадлежит более 120 научных работ. Книга «Технология лесохимических производств», написаниая с соавторами, вышла тремя изданиями, является ценным учебным пособием для подготовки специалистов лесохимиков, переведена на чешский язык. В. В. Фефиловым написан ряд пособий для практических работников промышленности и методических пособий для студентов.

- Проф. В. В. Фефилов ведет большую работу по подготовке научных кадров, поддерживает тесную связь с промышленными предприятиями является членом лесохимической секции технического совета Министерства лесной и деревообрабатывающей яромышленности СССР, председателем комиссии по химической переработке древесины секции лесной, деревообрабатывающей и целлюлозно-бумажной промышленности Министерства высшего и среднего специального образования СССР, активно участвует в качестве члена в ряде специализированных советов.
- В. В. Фефилов участник Великой Отечественной войны, имеет правительственные награды.

Желаем Владиславу Васильевичу Фефилову здоровья и усиехов в его многогранной деятельности!

Коллектив сотрудников кафедры химической технологии древесины Московского лесотехнического института

ЮБИЛЕЙ ВАСИЛИЯ ИЛЛАРИОНОВИЧА ЛЕВИНА

31 декабря 1976 г. исполнилось 80 лет со дня рождения известного ученого лесовода, крупного специалиста в области лесной таксации и лесоустройства Василия Илларионовича Левина. 50 лет из них Василий Илларионович посвятил изучению ле-

Еще будучи студентом Петроградского лесного института, эн работал техником в комиссии по отграничению лесов местного значения в Карелии. С 1927 г. он начал работать в Архангельском лесоустройстве, где провел интересные и важные для лесного хозяйства исследования по типологии северных лесов. Делом откликаясь на нужды развивавшейся лесной промышленности, он много трудился над вопросами: электрификации лесозаготовок и нормирования труда в лесу.

В. И. Левин — первый исследователь влияния осушительной мелиорации на повышение продуктивности таежных лесов. За эту ценную работу в 1940 г. ему была присвоена ученая степень кандидата сельскохозяйственных наук.

Но главную часть научной работы юбиляра составляют многочисленные труды по вопросам строения и роста северных сосняков и ельников, совершенствование методов учета таежных лесов. Им опубликовано около 100 научных работ. Многие егопредложения внедрены в производство и используются северными лесоустронтелями. За многолетнюю деятельность в области лесного хозяйства В. И. Левин имеет правительственные награды, ему присвоено звание заслуженного лесовода РСФСР.

Более 30 лет В. И. Левин проработал в Архангельском лесотехническом институте, последовательно занимая должности научного работника, доцента, заведующего кафедрой лесной таксации и лесоустройства; много лет был декансм лесохозяйственного факультета. Он воспитал тысячи специалистов лесного хозяйства и ряд кандидатов наук. Сейчас, находясь на заслуженном отдыхе, Василий Илларионович продолжает много трудиться. В своей работе В. И. Левин тесно связан с производственниками, которым оказывает большую помощь своими советами.

Друзья и ученики юбиляра горячо желают ему доброго здоровья и долгих летдальнейшего плодотворного труда на благо лесной науки.

- П. И. Войчаль, В. И. Калинин, И. С. Попова, О. А. Неволин, И. И. Гусев, Н. Н. Соколов, Л. Ф. Ипатов, А. А. Бахтин.

Архангельский лесотехнический институт-

СОДЕРЖАНИЕ	
И. М. Боховкин, Е. С. Романов. Юбилею Великого Октября—достойную встречу	3
ЛЕСНОЕ ХОЗЯЙСТВО	
А. Д. Янушко, В. Н. Кисляков. Продукция рубок ухода в культурах сосны А. А. Строчинский, А. З. Швиденко. Исследование формы и полнодревесности стволов ели в Украинских Қарпатах (Закономерности взаимосвязи как	5
основа нормативной лесоучетной информации)	10
ков при различных режимах рубок ухода	16 18
Э. А. Быченкова. Подбор оптимальной питательной среды для выращивания первичных культур тканей ряда представителей сосновых и изучение их роста	22
Д. А. Усова. Сезонный ритм содержания золы у подроста хвойных и химический состав хвои	28
 В. Пономаренко, В. С. Петровский. Некоторые физико-механические свойства семян сосны обыкновенной, ели сибирской и лиственницы сибирской 	31
А. В. Альбенский, Агролесомелиорация и защитное лесоразведение в СССР	34
<i>ЛЕСОЭКСПЛУАТАЦИЯ</i>	
Н. И. Библюк. О выборе расчетной модели при исследовании вертикальных ко- лебаний лесовозного автопоезда	39
Г. Ф. Кислицына. Исследование конструктивных параметров окорки древеснны импульсными гидравлическими струями	44
В. И. Мельников. Важная проблема совершенствования лесовозных автомобильных дорог	47
С. И. Морозов, М. В. Попов. Определение неровностей рельсо-шиальной решетки на закруглениях пути в плане	51
И. И. Слепко, И. Н. Береговой. Исследование напряжений изгиба в несущих канатах под действием многокатковой каретки	56
А. В. Дуров. Топливная экономичность тепловозов ТУ7 при поездной работе .	61
МЕХАНИЧЕСКАЯ ОБРАБОТКА ДРЕВЕСИНЫ И ДРЕВЕСИНОВЕДЕНИЕ	
А. С. Чурилин, Ю. А. Матыцин, Н. Н. Борисова. Қ вопросу вибродемпфировання тонкостенных конструкций в условиях деревообработки	66
В. Н. Курицын. Влияние отрицательной температуры, давления и скорости скольжения на коэффициент трения древесины по стали	70
Н. И. Тимофеев. Динамический расчет фрезерного узла окантовочного станка . И. И. Судоров. Распиловка бревен или брусьев параллельно обеим боковым	74
образующим	78
 И. Шустерзон. О методе измерения электрического сопротивления клеевых соединений древесины Я. М. Ширяев, М. Я. Гембицкий, В. М. Лобанов. Исследование напряженного 	82
состояния в рамной пиле	85
7. И. Горговников, Ю. В. Котов, И. А. мануилов, В. Б. Савин, В. Г. Кузьмина. Диэлектрические свойства древесины ели на сверхвысоких частотах	89
химическая переработка древесины	
В. А. Демин, Г. И. Попова, Б. Д. Богомолов, В. Д. Давыдов. Исследование лигнинов, выделенных из сульфатного щелока и небеленой сульфатной целлюлозы	96
И. М. Горячева, И. А. Қазаков, Г. Қ. Уткин, С. И. Ремпель, М. Б. Фрейдкин, Способ пропитки щепы при сульфатной варке	99
В. И. Крупенский, И. И. Корольков. Т. В. Долгая. Определение состава и устой- чивости комплекса Се (IV) с глюкозой и ксилозой	102

_	_	D. T. T.	
		Мариев, Б. С. Филиппов. О полноте использования смоляных кислот при ректификации таллового масла	1
Η.	Α.	Николаева, Э. И. Чупка, В. М. Никитин. Парамагнитные свойства модельных соединений структурного звена лигнина	1
		КОМПЛЕКСНАЯ МЕХАНИЗАЦИЯ И АВТОМАТИЗАЦИЯ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ	
И.	П.	Репринцев, Ю. И. Меремьянин. Прогноз безопасности труда	1
<i>C</i> .	В.	<i>Карпов, Э. Н. Сабуров.</i> К обобщению экспериментальных данных по аэродинамике циклонных камер	1
В.	И.	<i>Шустов, Ю. В. Лебедев.</i> Применение цепей Маркова в исследовании работы технологических линий	1
		ЭКОНОМИКА И ОРГАНИЗАЦИЯ ПРОИЗВОДСТВА	
		Ларионов. Расчет структуры парка и периодов замены машин	1
		Петров, Р. В. Кардакова. Экономические основы интеграции лесозаготовок, деревопереработки и лесного хозяйства	1
		Николаев. К вопросу о резервах комплексных бригад на лесозаготовках	1
Α.	И.	Тарасов. Издержки рекреационного лесопользования в Причерноморые .	1
		КРАТКИЕ СООБЩЕНИЯ И ОБМЕН ОПЫТОМ	
В.	II.	Рябчук. Централизованный сбор сока лиственных пород	1
		Свидерский, В. Я. Казаков, Р. Г. Смирнов. К вопросу о построении модели расчетного дерева для условий Архангельской области	1
		Охинько. Изучение эксплуатационной падежности подшипников скольжения	1
		Гойденко, Х. М. Андрухаев. О вероятностной оценке работы лесного дискового культиватора	
		Плужников. Дискретизация записей микропрофилей лесовозных дорог .	
		Салминен. О расчете нежестких дорожных одежд с учетом упругих и пластических деформаций	1
		Санев, И. Г. Назаренко, Л. А. Оборин. Упрочнение дереворежущих инструментов стеллитом в среде аргона	1
		<i>Демьяновский, Б. М. Ценципер.</i> Высокопроизводительная обработка каландровых валов	j
		Суровцева. Раскрой отпада от пиломатериалов экспортного назначения на черновые заготовки для мебели	1
		Ильев, Р. Н. Гордиенко, Т. М. Кушнерова. О рекреационном использовании лесов	
C.	Ь.	Пальмова, Е. Д. Гельфанд. Гидролизный лигнин как коагулянт	
H.	11.	<i>Тиранов, Л. М. Кочетов, Б. С. Сажин.</i> Сушка сульфатного лигикна в вихревых сушильных камерах	
		НАУЧНЫЕ КОНФЕРЕНЦИИ И СОВЕЩАНИЯ	
		Положенцев. Химические и биологические средства защиты леса	
Φ.	Α.	<i>Медников</i> . О повышении эффективности работы и качества продукции подсочного и осмолозаготовительного производства	
		КРИТИКА И БИБЛИОГРАФИЯ	
И.	В.	Воронин, Л. И. Косова, Л. И. Панищева. Опыт экономической оценки лесов в Литовской ССР	
Η.	И.	Кожухов. Книга об экономических проблемах комплексного использования и охраны лесных ресурсов	
Κα	лле	ектив сотрудников кафедры химической технологии древесины Московско-	
		го лесотехнического института. Юбилей Владислава Васильевича Фефилова Войчаль, В. И. Калинин, И. С. Попова, О. А. Неволин, И. И. Гусев,	
		Н. Н. Соколов, Л. Ф. Ипатов, А. А. Бахтин. Юбилей Василия Илларионовича Левина	

CONTENT

I. M. Bokhovkin, E. S. Romanov. Deserving meeting to the Great October jubilee	3
FORESTRY	
A. D. Janushko, V. N. Kislyakov. The output of the fellings of care in the crops of pine	5
A. A. Strochinsky, A. Z. Shvidenko. Investigation of the form of fir-stems in the Ukrainian Karpathiens. Regularity of interconnection as a foundation information	10
R. N. Klimov, A. M. Elfimov. Alteration in the structure of middle-aged birch stands after different cuttings	16
A. A. Kulygin. On biology of Gleditschia triacanthos f. inermis Willd	18
E. A. Bychenkova. Optimal selection of nutritious environment for growing primary crops of tissues of a number of representatives of pines and investigating their growth	22
D. A. Usova. Seasonal rhythm of ash content in conifer sprouts and chemical composition of pine-needles	28
P. V. Ponomarenko, V. S. Petrovsky. Some physico-mechanical properties of seeds of scotch pine, siberian spruce and siberian larch	31
A. V. Albensky. Agriforestmelioration and protective afforestation in the USSR	34
FOREST EXPLOITATION	
N. I. Biblyuk. On the choice of rated model when investigating the vertical fluctuations of a truck train	39
G. F, Kislitsina. Investigation of constructional parameters of wood debarking by impulsive hydraulic spurts	44
V. I. Melnikov. The important problem of forest roads improvement	47
S. I. Morozov, M. V. Popov. Determination of unevenness of rail-tie frame on curving the way	51
I. I. Slepko, I. N. Beregovoy. Investigation of bending stress in carrying ropes under the action of multyroller carriage	56
A. V. Durov. Fuel economic efficiency of Tu7 diesel locomotives while working with trains	61
MECHANICAL TECHNOLOGY AND WOODSCIENCE	
A. S. Churilin, Yu. A. Matytsin, N. N. Borisova. On the problem of damping thin-walled metallic constructions in wood-working	66
V. N. Kuritsyn. Influence of negative temperature, pressure and velocity of sliding on the coefficient of wood friction against steel	70
N. 1. Timofeev. Dynamic calculation of milling knot of edging machine-tool.	74 70
I. I. Sidorov. Sawing logs and cants parallel to both side forming lines G. I. Shusterson. On the method of measuring electric resistance in glue	78
joints of wood	82
state in the frame saw	85
Dielectric properties of fir wood at microwave frequencies	89
CHEMICAL WOODWORKING	
V. A. Demin, G. I. Popova, B. D. Bogomolov, V. D. Davydov. Investigation of sulphate lignin and lignin, obtained from unbleached sulphate pulp. I. M. Goryacheva, I. A. Kazakov, G. K. Utkin, S. I. Rempel, M. B. Freidkin.	96
Chip impregnation methods in sulphate cooking	99
stability of complex Ce (IV) with xylose and glucose,	102
A. A. Mariev, B. S. Filippov. The utilization of resin acids in rectification of tall oil	105

S. V. Karpov, E. N. Saburov. Generalizing experimental data on aerodynamics of cyclone chambers	N. A. Nicolaeva, E. A. Chupka, V. M. Nikitin. Paramagnetic properties of model connections of lignin structural section	111
S. V. Karpov, E. N. Saburov. Generalizing experimental data on aerodynamics of cyclone chambers		•
V. Ya. Larionov. Determination of structure of machine fleet and of machines' replacement periods	S. V. Karpov, E. N. Saburov. Generalizing experimental data on aerodynamics of cyclone chambers	116 119 123
replacement periods	ECONOMICS AND ORGANIZATION OF PRODUCTION	
V. P. Ryabchuk. Centralised tapping system for broad-leaved species	replacement periods	126 129 134 137
V. M. Svidersky, V. Ya. Kazakov, R. G. Smirnov. On the problem of building up the model of the estimated tree for the conditions of Arkhangelsk region	SHORT REPORTS AND EXCHANGE OF EXPERIENCE	
N. I. Pluznikov. Record discritization of microprofiles for forest transportation roads	 V. M. Svidersky, V. Ya. Kazakov, R. G. Smirnov. On the problem of building up the model of the estimated tree for the conditions of Arkhangelsk region V. A. Okhinko. Investigation of operating reliability of plain bearings A.A. Goidenko, H. M. Andrukhaev. On probable valuation of forest disk culti- 	140 143 145
E. O. Salminen. On calculation of flexible pavements with elastic and plastic deformations	vator N. I. Pluznikov. Record discritization of microprofiles for forest transportation	147
V. I. Sanev, I. G. Nazarenko, L. A. Oborin. The consolidation of wood-cutting tools with stellite in argon medium	E. O. Salminen. On calculation of flexible pavements with elastic and plastic	151 152
P. A. Polozhentsev. Chemical and biological means of forest protection	 V. I. Sanev, I. G. Nazarenko, L. A. Oborin. The consolidation of wood-cutting tools with stellite in argon medium	154 156 J58 159 161 162
F. A. Mednikov. On rising the effectiveness of labour and quality of products of boxing and pitching laing production	SCIENTIFIC CONFERENCES AND DELIBERATIONS	
I. V. Voronin, L. I. Kosova, L. I, Panishcheva. The experiment of economical valuation of forest in Litovskaja SSR	F. A. Mednikov. On rising the effectiveness of labour and quality of products	165 167
valuation of forest in Litovskaja SSR	CRITIQUE AND BIBLIOGRAPHY	
The staff of the chair of chemical technology of wood of MLTI. Jubilee of Viadislav Vasilievich Fefilov	valuation of forest in Litovskaja SSR	169 170
Viadislav Vasilievich Fefilov	JUBILEES	
	Viadislav Vasilievich Fefilov	171 172